1
|
Pereira CFDA, Melo MNDO, de Campos VEB, Pereira IP, Oliveira AP, Rocha MS, Batista JVDC, Paes de Almeida V, Monchak IT, Ricci-Júnior E, Garrett R, Carvalho AGA, Manfron J, Baumgartner S, Holandino C. Self-Nanoemulsifying Drug Delivery System (SNEDDS) Using Lipophilic Extract of Viscum album subsp. austriacum (Wiesb.) Vollm. Int J Nanomedicine 2024; 19:5953-5972. [PMID: 38895147 PMCID: PMC11185262 DOI: 10.2147/ijn.s464508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Background and Purpose Natural products are potential sources of anticancer components. Among various species, the lipophilic extract of the Viscum album subsp. austriacum (Wiesb.) Vollm. (VALE) has shown promising therapeutic potential. The present work aimed to qualify the plant source and characterize the extract's chemical profile. In addition, a self-nanoemulsifying drug delivery system (SNEDDS) containing VALE (SNEDDS-VALE) was developed. Methods V. album subsp. austriacum histochemistry was performed, and the chemical profile of VALE was analyzed by GC-MS. After the SNEEDS-VALE development, its morphology was visualized by transmission electron microscopy (TEM), while its stability was evaluated by the average droplet size, polydispersity index (PdI) and pH. Lastly, SNEDDS-VALE chemical stability was evaluated by LC-DAD-MS. Results The histochemical analysis showed the presence of lipophilic compounds in the leaves and stems. The major compound in the VALE was oleanolic acid, followed by lupeol acetate and ursolic acid. SNEDDS was composed of medium chain triglyceride and Kolliphor® RH 40 (PEG-40 hydrogenated castor oil). A homogeneous, isotropic and stable nanoemulsion was obtained, with an average size of 36.87 ± 1.04 nm and PdI of 0.14 ± 0.02, for 14 weeks. Conclusion This is the first histochemistry analysis of V. album subsp. austriacum growing on Pinus sylvestris L. which provided detailed information regarding its lipophilic compounds. A homogeneous, isotropic and stable SNEDDS-VALE was obtained to improve the low water solubility of VALE. Further, in vitro and in vivo experiments should be performed, in order to evaluate the antitumoral potential of SNEDDS-VALE.
Collapse
Affiliation(s)
- Camila Faria de Amorim Pereira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Nonato de Oliveira Melo
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ivania Paiva Pereira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Passos Oliveira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Souza Rocha
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Vitor da Costa Batista
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Valter Paes de Almeida
- Postgraduate Program in Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Irailson Thierry Monchak
- Postgraduate Program in Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Eduardo Ricci-Júnior
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Stephan Baumgartner
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
- Institute of Integrative Medicine, University of Witten/Herdecke, Herdecke, Germany
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland
| | - Carla Holandino
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland
| |
Collapse
|
2
|
Prajapat VM, Aalhate M, Sriram A, Mahajan S, Maji I, Gupta U, Kumari D, Singh K, Kalia NP, Dua K, Singh SK, Singh PK. Amphotericin B loaded nanoemulsion: Optimization, characterization and in-vitro activity against L. donovani promastigotes. Parasitol Int 2024; 100:102848. [PMID: 38159836 DOI: 10.1016/j.parint.2023.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The present work aimed to develop and evaluate AmB-loaded nano-emulsion (AmB-NE) which will augment the solubility of AmB and lead to enhanced anti-leishmanial activity. The composition of AmB-NE was optimized by systematic screening followed by DoE-extreme vertices mixture design. The optimized NE revealed mean droplet size and PDI of 44.19 ± 5.5 nm, 0.265 ± 0.0723, respectively. The NE could efficiently encapsulate AmB with drug content and efficiency 83.509 ± 0.369% and 81.659 ± 0.013%, respectively. The presence of cholesterol and stearyl amine retarded the release (P < 0.0001) of AmB significantly compared to AmB suspension. The AmB-NE and pure AmB suspension demonstrated the IC50 of 0.06309 μg/mL and 0.3309 μg/mL against L.donovani promastigotes after 48 h incubation. The formulation was robust at all exaggerated stability conditions such as freeze-thaw and centrifugation. These findings indicate that AmB-NE is an attractive approach to treat visceral leishmaniasis with improved activity.
Collapse
Affiliation(s)
- Vikram Mohanlal Prajapat
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitin Pal Kalia
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
3
|
Elhoseny SM, Saleh NM, Meshali MM. Self-Nanoemulsion Intrigues the Gold Phytopharmaceutical Chrysin: In Vitro Assessment and Intrinsic Analgesic Effect. AAPS PharmSciTech 2024; 25:54. [PMID: 38443653 DOI: 10.1208/s12249-024-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.
Collapse
Affiliation(s)
- Samar Mohamed Elhoseny
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Beaven E, Kumar R, An JM, Mendoza H, Sutradhar SC, Choi W, Narayan M, Lee YK, Nurunnabi M. Potentials of ionic liquids to overcome physical and biological barriers. Adv Drug Deliv Rev 2024; 204:115157. [PMID: 38104896 PMCID: PMC10787599 DOI: 10.1016/j.addr.2023.115157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Over the last decades, ionic liquids (IL) have shown great potential in non-invasive delivery starting from synthetic small molecules to biological large molecules. ILs are emerging as a particular class of drug delivery systems due to their unique physiochemical properties, simple surface modification, and functionalization. These features of IL help achieve specific design principles that are essential for a non-invasive drug delivery system. In this review, we have discussed IL and their applications in non-invasive drug delivery systems. We evaluated state-of-the-art development and advances of IL aiming to mitigate the biological and physical barriers to improve transdermal and oral delivery, summarized in this review. We also provided an overview of the various factors determining the systemic transportation of IL-based formulation. Additionally, we have emphasized how the ILs facilitate the transportation of therapeutic molecules by overcoming biological barriers.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannia Mendoza
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Republic of Korea
| | - Wonho Choi
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Republic of Korea
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Yong-Kyu Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemical and Biological Engineering, College of Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea; 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Republic of Korea.
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States; Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
5
|
Ateeq MAM, Aalhate M, Mahajan S, Kumar GS, Sen S, Singh H, Gupta U, Maji I, Dikundwar A, Guru SK, Singh PK. Self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel and carvacrol synergizes the anticancer activity and enables safer toxicity profile: optimization, and in-vitro, ex-vivo and in-vivo pharmacokinetic evaluation. Drug Deliv Transl Res 2023; 13:2614-2638. [PMID: 37067745 DOI: 10.1007/s13346-023-01342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Docetaxel (DTX) is a first-line chemotherapeutic molecule with a broad-spectrum anticancer activity. On the other hand, carvacrol (CV) has anti-inflammatory, antioxidant, cytotoxic, and hepatoprotective properties that could reduce undue toxicity caused by DTX chemotherapy. Thus, in order to overcome the challenges posed by DTX's poor aqueous solubility, low permeability, hepatic first pass, and systemic toxicities, we have developed a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) co-loaded with DTX and CV. In the present investigation, liquid-SNEDDS (L-SNEDDS) were fabricated using Nigella sativa oil, Cremophor RH 40, and Ethanol which was converted into solid by lyophilization using Aerosil 200. The reconstituted CV-DTX-S-SNEDDS showed an average globule size of < 200 nm with promising flow properties (angle of repose θ: 33.22 ± 0.06). Additionally, 2.3-fold higher dissolution of DTX was observed from CV-DTX-S-SNEDDS after 6 h as compared to free DTX. Similar trend was followed in dialysis release experiments with 1.5-fold higher release within 24 h. Ex vivo permeation studies demonstrated significantly increased permeation of 1077.02 ± 12.72 μg/cm2 of CV-DTX-S-SNEDDS after 12 h. In vitro cell cytotoxicity studies revealed 5.2-fold reduction in IC50 as compared to free DTX in MDA-MB-231 cells. Formulation was able to induce higher apoptosis in cells treated with CV-DTX-S-SNEDDS as compared to free DTX and CV. It was evident from toxicity studies that CV-DTX-S-SNEDDS was well tolerated at higher dose where CV was able to manage the toxic effects of free DTX. In vivo pharmacokinetic study showed 3.4-fold increased Cmax and improved oral bioavailability as compared to free DTX. Thus, CV-DTX-S-SNEDDS could be an encouraging option for facilitating DTX oral therapy.
Collapse
Affiliation(s)
- Mohd Aman Mohd Ateeq
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Gogikar Shiva Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Sibu Sen
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Amol Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
6
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
7
|
Xin J, Qin M, Ye G, Gong H, Li M, Sui X, Liu B, Fu Q, He Z. Hydrophobic ion pairing-based self-emulsifying drug delivery systems: a new strategy for improving the therapeutic efficacy of water-soluble drugs. Expert Opin Drug Deliv 2023; 20:1-11. [PMID: 36408589 DOI: 10.1080/17425247.2023.2150758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are formulations consisting of oil phase, emulsifiers, and co-emulsifiers, which can be spontaneously emulsified in the body to form O/W microemulsion. Traditionally, SEDDS are used commercially for the improvement of oral absorption and in vivo performances for poorly water-soluble drugs. However, SEDDS formulations were rarely reported for the delivery of water-soluble drugs. Recent studies have found that SEDDS have the potential for water-soluble macromolecular drugs by the application of the hydrophobic ion pairing (HIP) technology. AREAS COVERED This review summarized the characteristics of HIP complexes in SEDDS and introduced their advantages and discussed the future prospects of HIP-based SEDDS in drug delivery. EXPERT OPINION Hydrophobic ion pairing (HIP) is a technology that combines lipophilic structures on polar counterions to increase the lipophilicity through electrostatic interaction. Recent studies showed that HIP-based SEDDS offer an effective way to increase the mucosal permeability and improve the chemical stability for antibiotics, proteases, DNA-based drugs, and other water-soluble macromolecular drugs. It is believed that HIP-based SEDDS offer a potential and attractive method capable of delivering hydrophilic macromolecules with ionizable groups for oral administration.
Collapse
Affiliation(s)
- Jinghan Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mengdi Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Genyang Ye
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Gong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
8
|
Wasan E, Mandava T, Crespo-Moran P, Nagy A, Wasan KM. Review of Novel Oral Amphotericin B Formulations for the Treatment of Parasitic Infections. Pharmaceutics 2022; 14:2316. [PMID: 36365135 PMCID: PMC9697626 DOI: 10.3390/pharmaceutics14112316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 09/26/2023] Open
Abstract
Amphotericin B (AmpB) is a polyene macrolide antibiotic used in the treatment of blood-borne parasitic and fungal infections. However, its use, particularly in the developing world, has been limited by dose-dependent kidney toxicity, other systemic-related toxicity issues following injection, the inconvenience of parenteral administration, and accessibility. Oral formulation approaches have focused on the dual problem of solubility and permeability of AmpB, which is poorly water soluble, amphoteric and has extremely low oral bioavailability. Therefore, to enhance oral absorption, researchers have employed micellar formulations, polymeric nanoparticles, cochleates, pro-drugs, and self-emulsifying drug delivery systems (SEDDS). This paper will highlight current uses of AmpB against parasitic infections such as leishmaniasis, preclinical and clinical formulation strategies, applications in veterinary medicine and the importance of developing a cost-effective and safe oral AmpB formulation.
Collapse
Affiliation(s)
- Ellen Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Health Sciences Building, Saskatoon, SK S7N 5E5, Canada
| | - Tavonga Mandava
- College of Pharmacy and Nutrition, University of Saskatchewan, Health Sciences Building, Saskatoon, SK S7N 5E5, Canada
| | - Pablo Crespo-Moran
- College of Pharmacy and Nutrition, University of Saskatchewan, Health Sciences Building, Saskatoon, SK S7N 5E5, Canada
| | - Adrienne Nagy
- College of Pharmacy and Nutrition, University of Saskatchewan, Health Sciences Building, Saskatoon, SK S7N 5E5, Canada
| | - Kishor M. Wasan
- Department of Urologic Sciences, Faculty of Medicine & the Neglected Global Diseases Initiative, University of British Columbia, Vancouver Campus, Vancouver, BC V5Z 1L8, Canada
| |
Collapse
|
9
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Himani, Pratap Singh Raman A, Babu Singh M, Jain P, Chaudhary P, Bahadur I, Lal K, Kumar V, Singh P. An Update on Synthesis, Properties, Applications and Toxicity of the ILs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Ali MK, Moshikur RM, Goto M, Moniruzzaman M. Recent Developments in Ionic Liquid-Assisted Topical and Transdermal Drug Delivery. Pharm Res 2022; 39:2335-2351. [PMID: 35773446 DOI: 10.1007/s11095-022-03322-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) have attracted growing interest as designer solvents/materials for exploring unrealized functions in many areas of research including drug formulations and delivery owing to their inherent tunable physicochemical and biological properties. The use of ILs in the pharmaceutical industry can address challenges related to the use of conventional organic solvent-based chemical permeation enhancers. Their tunability in forming ion pairs with a diverse range of ions enables the task-specific optimization of ILs at the molecular level. In particular, ILs comprising second- and third-generation cations and anions have been extensively used to design biocompatible drug delivery systems to address the challenges related to conventional topical and transdermal drug delivery, including limited permeability, high cytotoxicity, and skin irritation. This review highlights the progress in IL-related research with particular emphasis on the very recent conceptual developments in transdermal drug delivery. Technological advancement and approaches for the formation of IL-based topical and transdermal delivery systems, as well as their promising application in drug delivery, are also discussed.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
- Center for Research in Ionic Liquids, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
12
|
Recent Developments on Ionic Liquids and Deep Eutectic Solvents for Drug Delivery Applications. Pharm Res 2022; 39:2367-2377. [PMID: 35739370 DOI: 10.1007/s11095-022-03315-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
The field of Ionic liquids (ILs) and deep eutectic solvents (DESs) is continuously expanding due to their exceptional unique properties and highly tunable nature, which finds applications in broad areas of modern science. Considering numerous possible IL and DES combinations prepared with active pharmaceutical ingredients (APIs), they find applications in pharmaceutical sciences. They can also serve as potential components of drug formulations and hence they have drawn the attention of formulation scientists. Herein, the concept of pharmaceutical ILs and DESs are discussed briefly. The possible applications of these solvent systems for slow drug delivery including nanoscale drug delivery are discussed citing various examples from the published literature. Although the ILs and DESs are found to be suitable for various drug delivery applications but still none of the slow drug delivery vehicles based on these solvents is in practical use. The data relating to long-term toxicity upon administration in the human body followed by various safety evaluations, clinical trials, etc. are pending for such new drug delivery systems. However, proof of concept studies done on the retention of biological activities in the ionic form is quite encouraging and such studies indicate the possibility of application of such new systems in the development of biomedical research and related industries in near future.
Collapse
|
13
|
Ionic Liquids: Promising Approach for Oral Drug Delivery. Pharm Res 2022; 39:2353-2365. [PMID: 35449344 DOI: 10.1007/s11095-022-03260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Oral administration is the most preferred route for drug administration in clinic. However, due to unsatisfactory physicochemical properties of drugs and various physiological barriers, the oral bioavailability of most poorly water-soluble and macromolecules drugs is low and the therapeutic effect is unsatisfactory. Ionic liquids (ILs), molten salts with unique properties, show amazing potential for oral delivery. In addition to being able to form active pharmaceutical ingredients based ILs (API-ILs) to overcome drug solubility and polymorphism issues, ILs have also been used to enhance the solubility of poorly soluble drugs, enhance drug stability in the gastrointestinal environment, improve drug permeability in intestinal mucus, and facilitate drug penetration across the intestinal epithelial barrier. Furthermore, ILs were attempted as formulation components to develop novel oral drug delivery systems. This review focus on the application progress of ILs in oral drug delivery and the mechanisms. The challenges and perspectives of the development of ILs-based oral delivery systems are also discussed. This article reviews the latest advances of ionic liquids for oral drug delivery, focusing on the application and related mechanisms of ionic liquids in improving the drug physicochemical properties and enhancing drug delivery across physiological barriers.
Collapse
|
14
|
|
15
|
|
16
|
El-Dakroury WA, Zewail MB, Elsabahy M, Shabana ME, Asaad GF. Famotidine-loaded solid self-nanoemulsifying drug delivery system demonstrates exceptional efficiency in amelioration of peptic ulcer. Int J Pharm 2022; 611:121303. [PMID: 34798155 DOI: 10.1016/j.ijpharm.2021.121303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Famotidine (FMD) is a highly potent H2-receptor antagonist used in peptic ulcer treatment. However, the drug possesses poor aqueous solubility and permeability. FMD-loaded solid self-nanoemulsifying drug delivery system (FMD-S-SNEDDS) comprised of Labrafil® M 1944 CS, Tween® 20 and PEG 400, adsorbed on Aerosil® 200, has been developed. FMD-S-SNEDDS has demonstrated acceptable micromeritic properties, and upon reconstitution in water, spherical nanosized particles were released, as demonstrated by dynamic light scattering studies and transmission electron microscopy imaging. High encapsulation efficiency of FMD in the developed SNEDDS has been attained, and the saturated solubility of the drug has increased by 20-fold when it was incorporated in the SNEDDS. Several in vitro characterizations have been carried out, including, Fourier transform-infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and drug dissolution studies. In vivo, upon administration of the free drug suspension, marketed product (FAMOTIN®) and FMD-S-SNEDDS (40 mg/kg) in peptic ulcer rat models, FMD-S-SNEDDS and the marketed FMD demonstrated 12.5- and 4.7-fold reduction in ulcers number, and 28.7- and 7.2-fold reduction in ulcer severity, respectively, compared to the control untreated animals. FMD-S-SNEDDS showed a significant (p < 0.05) increase in the levels of depleted glutathione and endothelial nitric oxide synthase, and significantly (p < 0.05) reduced the elevated level of malondialdehyde, as compared to the free and marketed FMD. Only FMD-S-SNEDDS could restore the elevated proton pump activity and cyclic adenosine monophosphate RNA expression to their normal levels. Hence, FMD-S-SNEDDS provides a great potential as a nanotherapeutic system for treatment of peptic ulcer.
Collapse
Affiliation(s)
- Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| | - Marwa E Shabana
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
17
|
Recent advances in surface-active ionic liquid-assisted self-assembly systems for drug delivery. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Development of Piperine-Loaded Solid Self-Nanoemulsifying Drug Delivery System: Optimization, In-Vitro, Ex-Vivo, and In-Vivo Evaluation. NANOMATERIALS 2021; 11:nano11112920. [PMID: 34835684 PMCID: PMC8624913 DOI: 10.3390/nano11112920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.
Collapse
|
19
|
Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics 2021; 13:pharmaceutics13081287. [PMID: 34452248 PMCID: PMC8399075 DOI: 10.3390/pharmaceutics13081287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 µm, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 µm and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models.
Collapse
|
20
|
Thanki K, Date T, Jain S. Enabling Oral Amphotericin B Delivery by Merging the Benefits of Prodrug Approach and Nanocarrier-Mediated Drug Delivery. ACS Biomater Sci Eng 2021. [PMID: 33587853 DOI: 10.1021/acsbiomaterials.0c01505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphotericin B (AmB) is gold standard therapy for leishmaniasis and fungal infections. Considering the global disease burden, nearly 90% of cases occur in economically vulnerable countries, making the cost of AmB therapy a critical healthcare challenge in controlling disease burden. All currently marketed AmB products are administered through an intravenous (i.v.) route and involve high treatment costs. Designing an orally effective AmB formulation can substantially reduce the cost of therapy and improve patient compliance. However, it is a challenging task because of the distinctive physicochemical properties of AmB. Previously, we developed a lipid-based prodrug of AmB, AmB-oleyl conjugate (AmB-OA), which showcased remarkable stability in the gastrointestinal (GI) environment and improved intestinal permeation. Hereby, we have developed self-nanoemulsifiying drug delivery system (SNEDDS) of AmB-OA to further enhance the oral bioavailability of AmB and potentiate its therapeutic benefits. SNEDDS was developed by screening a wide range of oils, surfactants, and cosurfactants, and formulation composition was optimized using extreme vertices design. AmB-OA SNEDDS possessed the ability of quick self-nanoemulsification on dilution (droplet size ∼56 nm) along with remarkable stability in the GI environment. Accelerated stability (40 °C/75% relative humidity) studies and freeze-thaw cycling studies proved that the formulation was stable at tropical conditions as well as temperature cycling stress. Drug transport analysis in Caco-2 cells revealed a remarkable increase in drug transport for AmB-OA SNEDDS compared to AmB along with minimal cellular toxicities. AmB-OA SNEDDS showcased ∼8.9-fold higher AUCTot than AmB in in vivo pharmacokinetic study, proving the effectiveness of formulation to enhance oral bioavailability. In vivo toxicity analysis highlighted the ameliorated toxicity risk associated with SNEDDS formulation. Therefore, the AmB-OA SNEDDS formulation may provide a cost-friendly and effective strategy to resolve the oral AmB drug delivery challenge.
Collapse
Affiliation(s)
- Kaushik Thanki
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, Punjab 160062, India
| |
Collapse
|
21
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021; 15:557-576. [PMID: 33603345 PMCID: PMC7886095 DOI: 10.2147/dddt.s292417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Daphne/chemistry
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Delivery Systems
- Emulsions
- Flavones/administration & dosage
- Flavones/chemistry
- Flavones/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Hua-Feng Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
- Jiangxi QingFeng Pharmaceutical Co., Ltd, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Chun-Ming Yin
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Ting Ouyang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shu-Ding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Wei-Guo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| |
Collapse
|
22
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|