1
|
Yu J, Ryu JH, Chi YH, Paik SH, Kim SK. Cytochrome P450-mediated metabolic interactions between donepezil and tadalafil in human liver microsomes. Toxicol In Vitro 2024; 100:105922. [PMID: 39173683 DOI: 10.1016/j.tiv.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Donepezil and tadalafil, commonly prescribed among older persons to treat dementia and erectile dysfunction, respectively, are primarily metabolized by cytochrome P450 (CYP) 3A4. However, the drug-drug interactions (DDIs) of these drugs are unknown. Therefore, this study evaluated the CYP-mediated metabolic interaction between donepezil and tadalafil using pooled human liver microsomes (HLMs) to predict their DDI potential. Donepezil metabolism was tadalafil-concentration dependently changed in HLMs incubated with 0.1 μM donepezil and showed the maximum 32.3% increase in the donepezil half-life at 1 μM tadalafil. The formation rates of donepezil metabolites, such as N-desbenzyl donepezil and 3-hydroxy donepezil, decreased by 28.3% and 30.3%, respectively, in HLMs incubated with 1 μM tadalafil and 0.1 μM donepezil. In contrast, neither the half-life of tadalafil nor the production rate of its metabolite, desmethylene tadalafil, was changed by >20% in the presence of donepezil (up to 1 μM). CYP3A4 activity was inhibited by tadalafil with an IC50 value of 22.6 μM but not by donepezil. After pre-incubating HLMs with tadalafil and NADPH, the tadalafil IC50 value against CYP3A4 was approximately 7.04-fold lower, suggesting time-dependent tadalafil inhibition. This study shows that the DDI between donepezil and tadalafil is primarily due to time-dependent inhibition against CYP3A4 by tadalafil.
Collapse
Affiliation(s)
- Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hyeon Ryu
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Ha Chi
- College of Pharmacy, Sunchon National University, Suncheon-si, Republic of Korea
| | - Soo Heui Paik
- College of Pharmacy, Sunchon National University, Suncheon-si, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03326-x. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Guan IA, Liu JST, Sawyer RC, Li X, Jiao W, Jiramongkol Y, White MD, Hagimola L, Passam FH, Tran DP, Liu X, Schoenwaelder SM, Jackson SP, Payne RJ, Liu X. Integrating Phenotypic and Chemoproteomic Approaches to Identify Covalent Targets of Dietary Electrophiles in Platelets. ACS CENTRAL SCIENCE 2024; 10:344-357. [PMID: 38435523 PMCID: PMC10906253 DOI: 10.1021/acscentsci.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear. This study explores the irreversible engagement of 23 electrophilic phytochemicals with platelets, unveiling the unique antiplatelet selectivity of sulforaphane (SFN). SFN impairs platelet responses to adenosine diphosphate (ADP) and a thromboxane A2 receptor agonist while not affecting thrombin and collagen-related peptide activation. It also substantially reduces platelet thrombus formation under arterial flow conditions. Using an alkyne-integrated probe, protein disulfide isomerase A6 (PDIA6) was identified as a rapid kinetic responder to SFN. Mechanistic profiling studies revealed SFN's nuanced modulation of PDIA6 activity and substrate specificity. In an electrolytic injury model of thrombosis, SFN enhanced the thrombolytic activity of recombinant tissue plasminogen activator (rtPA) without increasing blood loss. Our results serve as a catalyst for further investigations into the preventive and therapeutic mechanisms of dietary antiplatelets, aiming to enhance the clot-busting power of rtPA, currently the only approved therapeutic for stroke recanalization that has significant limitations.
Collapse
Affiliation(s)
- Ivy A. Guan
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Joanna S. T. Liu
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renata C. Sawyer
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Xiang Li
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63110, United States
- McDonnell
Genome Institute, Washington University
in St. Louis, St. Louis, Missouri 63108, United States
| | - Wanting Jiao
- Ferrier Research
Institute, Victoria University of Wellington, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yannasittha Jiramongkol
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark D. White
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
| | - Lejla Hagimola
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Freda H. Passam
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Denise P. Tran
- Sydney
Mass Spectrometry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoming Liu
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone M. Schoenwaelder
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shaun P. Jackson
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xuyu Liu
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| |
Collapse
|
4
|
Zhao Y, Liu P, Zhang Y, Jiang H, Luan H, Xu Y, Zhang Y, Li R. Demethyleneberberine blocked the maturation of IL-1β in inflammation by inhibiting TLR4-mitochondria signaling. Int Immunopharmacol 2022; 113:109319. [DOI: 10.1016/j.intimp.2022.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
5
|
Zhang F, Liu W, Huang J, Chen QL, Wang DD, Zou LW, Zhao YF, Zhang WD, Xu JG, Chen HZ, Ge GB. Inhibition of drug-metabolizing enzymes by Jingyin granules: implications of herb-drug interactions in antiviral therapy. Acta Pharmacol Sin 2022; 43:1072-1081. [PMID: 34183756 PMCID: PMC8237038 DOI: 10.1038/s41401-021-00697-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.
Collapse
Affiliation(s)
- Feng Zhang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Wei Liu
- grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jian Huang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, 201203 China
| | - Qi-long Chen
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Dan-dan Wang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd, Shanghai, 201703 China
| | - Li-wei Zou
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yong-fang Zhao
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Wei-dong Zhang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jian-guang Xu
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Hong-zhuan Chen
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Guang-bo Ge
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
6
|
The drug interaction potential of berberine hydrochloride when co-administered with simvastatin, fenofibrate, gemfibrozil, metformin, glimepiride, nateglinide, pioglitazone and sitagliptin in beagles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Zuo HL, Huang HY, Lin YCD, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD. Enzyme Activity of Natural Products on Cytochrome P450. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020515. [PMID: 35056827 PMCID: PMC8779343 DOI: 10.3390/molecules27020515] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases, play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug interactions, usually involving competition with another drug for the same enzyme binding site. Compounds from herbal or natural products are involved in many scenarios in the context of such interactions. These interactions are decisive both in drug discovery regarding the synergistic effects, and drug application regarding unwanted side effects. Herein, this review was conducted as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly 500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal formulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional medicines causing serious adverse events. Conducting this review may help in metabolism-based drug combination discovery, and in the evaluation of the safety profile of natural products used therapeutically.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Xiang-Jun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Dai-Lin Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Yu-Heng Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Correspondence: ; Tel.: +86-0755-2351-9601
| |
Collapse
|
8
|
Rao Gajula SN, Pillai MS, Samanthula G, Sonti R. Cytochrome P450 enzymes: a review on drug metabolizing enzyme inhibition studies in drug discovery and development. Bioanalysis 2021; 13:1355-1378. [PMID: 34517735 DOI: 10.4155/bio-2021-0132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Assessment of drug candidate's potential to inhibit cytochrome P450 (CYP) enzymes remains crucial in pharmaceutical drug discovery and development. Both direct and time-dependent inhibition of drug metabolizing CYP enzymes by the concomitant administered drug is the leading cause of drug-drug interactions (DDIs), resulting in the increased toxicity of the victim drug. In this context, pharmaceutical companies have grown increasingly diligent in limiting CYP inhibition liabilities of drug candidates in the early stages and examining risk assessments throughout the drug development process. This review discusses different strategies and decision-making processes for assessing the drug-drug interaction risks by enzyme inhibition and lays particular emphasis on in vitro study designs and interpretation of CYP inhibition data in a stage-appropriate context.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| | - Megha Sajakumar Pillai
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| |
Collapse
|
9
|
Choi MK, Song IS. Pharmacokinetic Drug-Drug Interactions and Herb-Drug Interactions. Pharmaceutics 2021; 13:610. [PMID: 33922481 PMCID: PMC8146483 DOI: 10.3390/pharmaceutics13050610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Due to the growing use of herbal supplementation-ease of taking herbal supplements with therapeutics drugs (i [...].
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|