1
|
Bhatt S S, Krishna Kumar J, Laya S, Thakur G, Nune M. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. J Tissue Eng 2024; 15:20417314241286092. [PMID: 39411269 PMCID: PMC11475092 DOI: 10.1177/20417314241286092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
Collapse
Affiliation(s)
- Supriya Bhatt S
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayanthi Krishna Kumar
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shurthi Laya
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Yang A, Luo D, Jia Y, Liu Y, Zhang Z, Li S, Liu R, Zhou J, Wang J. Targeted delivery of AZD5363 to T-cell acute lymphocytic leukemia by mSiO 2-Au nanovehicles. Colloids Surf B Biointerfaces 2023; 230:113505. [PMID: 37574619 DOI: 10.1016/j.colsurfb.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
T-cell acute lymphocytic leukemia (T-ALL) is the most common cancer in children, with a low survival rate because of drug resistance and a high recurrence rate. Targeted delivery of chemotherapy drugs can reduce their side effects and improve their efficacy. The abnormality of phosphatidylinositol-3-kinase/protein kinase B/ mammalian target of rapamycin (PI3K/Akt/mTOR) pathway plays a key role in T-ALL occurrence. AZD5363 is a selective Akt inhibitor with promising therapeutic potential for tumors encoded by the PI3K/Akt/mTOR pathway. However, the toxicity and side effects have limited its application in treating T-ALL. This study aimed to design a delivery system for targeting AZD5363 to T-ALL by sgc8c aptamer designed as mesoporous silica (mSiO2) decorated with Au nanoparticles. The cell-specific targeting and cytotoxicity of mSiO2-Au-AZD5363-Apt were investigated. The mSiO2-Au nanovehicles were found feasible for AZD5363 delivery, with high loading efficiency and pH-responsive release in the acidic lysosome. More importantly, mSiO2-Au-AZD5363-Apt nanovehicles could specifically recognize and enter T-ALL cells in vitro and in vivo, effectively inhibiting the proliferation of CCRF-CEM cells. In conclusion, mSiO2-Au-AZD5363-Apt provided an effective therapeutic method for the targeted treatment of T-ALL.
Collapse
Affiliation(s)
- Aiyun Yang
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Danqing Luo
- Department of Pediatric Hematology Oncology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuxuan Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zuo Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Shen Li
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Rong Liu
- Department of Pediatric Hematology Oncology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Jianhua Wang
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
3
|
Wang S, Zhang C, Fang F, Fan Y, Yang J, Zhang J. Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J Mater Chem B 2023; 11:8315-8326. [PMID: 37523205 DOI: 10.1039/d3tb00668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
With increasing demand for the accurate and safe treatment of cancer, non-invasive photodynamic therapy (PDT) has received widespread attention. However, most conventional photosensitizers are typically excited by short-wavelength visible light (400-700 nm), thus substantially hindering the penetration of light and the therapeutic effectiveness of the PDT procedure. Fortunately, near-infrared (NIR) light (>700 nm), in particular, light in the second near-infrared region (NIR-II, 1000-1700 nm) has a higher upper radiation limit, greater tissue tolerance, and deeper tissue penetration compared with traditional short-wavelength light excitation, and shows considerable potential in the clinical treatment of cancer. Therefore, it is of paramount importance and clinical value to develop photosensitizers that are excited by NIR-II light. In this review, for the first time we focus completely on recent progress made with various NIR-II photosensitizers for cancer treatment via PDT, and we briefly present the ongoing challenges and prospects of currently developed NIR-II photosensitizers for clinical practice in the near future. We believe that the above topics will inspire broad interest in researchers from interdisciplinary fields that include chemistry, materials science, pharmaceuticals, and clinical medicine, and provide insightful perspectives for exploiting new NIR-II photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Chuang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
4
|
Hong Q, Huo S, Guo J, Li B, Sun Y, Nie B, Liang S, Yang J, Yue B. Core–Shell Nanoparticle Combined with Bacterial Targeting and Antibiotic Loading for Bacteria Tracing and Clearing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Qimin Hong
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| | - Shicheng Huo
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| | - Jingjing Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Bo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Yanping Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Bin'en Nie
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| | - Shanhui Liang
- Department of Gynecological Oncology Fudan University Shanghai Cancer Center Fudan University Shanghai 200032 China
- Department of Oncology Shanghai Medical College Fudan University Shanghai 200032 China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Bing Yue
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| |
Collapse
|
5
|
Krajnović T, Pantelić NĐ, Wolf K, Eichhorn T, Maksimović-Ivanić D, Mijatović S, Wessjohann LA, Kaluđerović GN. Anticancer Potential of Xanthohumol and Isoxanthohumol Loaded into SBA-15 Mesoporous Silica Particles against B16F10 Melanoma Cells. MATERIALS 2022; 15:ma15145028. [PMID: 35888494 PMCID: PMC9320346 DOI: 10.3390/ma15145028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Xanthohumol (XN) and isoxanthohumol (IXN), prenylated flavonoids from Humulus lupulus, have been shown to possess antitumor/cancerprotective, antioxidant, antiinflammatory, and antiangiogenic properties. In this study, mesoporous silica (SBA-15) was loaded with different amounts of xanthohumol and isoxanthohumol and characterized by standard analytical methods. The anticancer potential of XN and IXN loaded into SBA-15 has been evaluated against malignant mouse melanoma B16F10 cells. When these cells were treated with SBA-15 containing xanthohumol, an increase of the activity correlated with a higher immobilization rate of XN was observed. Considering the amount of XN loaded into SBA-15 (calculated from TGA), an improved antitumor potential of XN was observed (IC50 = 10.8 ± 0.4 and 11.8 ± 0.5 µM for SBA-15|XN2 and SBA-15|XN3, respectively; vs. IC50 = 18.5 ± 1.5 µM for free XN). The main mechanism against tumor cells of immobilized XN includes inhibition of proliferation and autophagic cell death. The MC50 values for SBA-15 loaded with isoxanthohumol were over 300 µg/mL in all cases investigated.
Collapse
Affiliation(s)
- Tamara Krajnović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.K.); (D.M.-I.); (S.M.)
| | - Nebojša Đ. Pantelić
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; (N.Đ.P.); (T.E.)
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Katharina Wolf
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (K.W.); (L.A.W.)
| | - Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; (N.Đ.P.); (T.E.)
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.K.); (D.M.-I.); (S.M.)
| | - Sanja Mijatović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.K.); (D.M.-I.); (S.M.)
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (K.W.); (L.A.W.)
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; (N.Đ.P.); (T.E.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (K.W.); (L.A.W.)
- Correspondence: ; Tel.: +49-3461-46-2012
| |
Collapse
|