1
|
Baig MA, Du Y, Zan Z, Fan Z. Influence of cell shape on sonoporation efficiency in microbubble-facilitated delivery using micropatterned cell arrays. Sci Rep 2024; 14:30845. [PMID: 39730459 DOI: 10.1038/s41598-024-81410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically. NIH/3T3 fibroblasts were micropatterned into circle, square, triangle, and rectangle. A two-plate system ensured high-throughput and efficient sonoporation by controlling cationic microbubble-cell attachment. High-speed video microscopy captured the acoustic dynamics of microbubbles under short ultrasound pulses. Our findings reveal that for NIH/3T3 fibroblasts, rectangular cells achieved the highest sonoporation and survival rate, while square-shaped cells demonstrated the greatest propidium iodide uptake. Triangle-shaped NIH/3T3 fibroblasts displayed an initial rise then a plateau in the sonoporation and survival rate as the ultrasound pulse duration increased from 10 cycles to 100 cycles, and then to 200 cycles. Conversely, rectangle-shaped cells showed a decrease followed by a stabilization. Circle-shaped and rectangle-shaped HeLa cells exhibited similar sonoporation outcomes, which were not as effective as NIH/3T3 fibroblasts. This study underscores the significance of cell shape in optimizing sonoporation efficiency and highlights the potential of combining micropatterning with controlled targeting sonoporation to advance intracellular delivery technologies.
Collapse
Affiliation(s)
- Mirza Albash Baig
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Yanyao Du
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhaoguang Zan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhenzhen Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Kang Y, Liu Y, Fu P, Ma L. Peritoneal fibrosis: from pathophysiological mechanism to medicine. Front Physiol 2024; 15:1438952. [PMID: 39301425 PMCID: PMC11411570 DOI: 10.3389/fphys.2024.1438952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Peritoneal dialysis (PD) is currently one of the effective methods for treating end-stage renal disease (ESRD). However, long-term exposure to high concentration glucose in peritoneal dialysis environment could lead to peritoneal fibrosis (PF), impaired peritoneal filtration function, decreased peritoneal dialysis efficiency, and even withdrawal from peritoneal dialysis in patients. Considerable evidence suggests that peritoneal fibrosis after peritoneal dialysis is related to crucial factors such as mesothelial-to-mesenchymal transition (MMT), inflammatory response, and angiogenesis, etc. In our review, we summarize the pathophysiological mechanisms and further illustrate the future strategies against PF.
Collapse
Affiliation(s)
- Yingxi Kang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ito Y, Sun T, Tawada M, Kinashi H, Yamaguchi M, Katsuno T, Kim H, Mizuno M, Ishimoto T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci 2024; 25:8607. [PMID: 39201294 PMCID: PMC11354376 DOI: 10.3390/ijms25168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-β expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-β-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Mitsuhiro Tawada
- Department of Nephrology, Imaike Jin Clinic, Nagoya 464-0850, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University Medical Center, Okazaki 444-2148, Japan;
| | - Hangsoo Kim
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| |
Collapse
|
4
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2024:10.1007/s12033-024-01144-3. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther 2023; 8:450. [PMID: 38086815 PMCID: PMC10716479 DOI: 10.1038/s41392-023-01674-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
With the development and regulatory approval of immune checkpoint inhibitors and adoptive cell therapies, cancer immunotherapy has undergone a profound transformation over the past decades. Recently, therapeutic cancer vaccines have shown promise by eliciting de novo T cell responses targeting tumor antigens, including tumor-associated antigens and tumor-specific antigens. The objective was to amplify and diversify the intrinsic repertoire of tumor-specific T cells. However, the complete realization of these capabilities remains an ongoing pursuit. Therefore, we provide an overview of the current landscape of cancer vaccines in this review. The range of antigen selection, antigen delivery systems development the strategic nuances underlying effective antigen presentation have pioneered cancer vaccine design. Furthermore, this review addresses the current status of clinical trials and discusses their strategies, focusing on tumor-specific immunogenicity and anti-tumor efficacy assessment. However, current clinical attempts toward developing cancer vaccines have not yielded breakthrough clinical outcomes due to significant challenges, including tumor immune microenvironment suppression, optimal candidate identification, immune response evaluation, and vaccine manufacturing acceleration. Therefore, the field is poised to overcome hurdles and improve patient outcomes in the future by acknowledging these clinical complexities and persistently striving to surmount inherent constraints.
Collapse
Affiliation(s)
- Ting Fan
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Mingna Zhang
- Postgraduate Training Base, Shanghai East Hospital, Jinzhou Medical University, Shanghai, 200120, China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanlu Cao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Marchant V, Trionfetti F, Tejedor-Santamaria L, Rayego-Mateos S, Rotili D, Bontempi G, Domenici A, Menè P, Mai A, Martín-Cleary C, Ortiz A, Ramos AM, Strippoli R, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Ameliorates Experimental Peritoneal Damage by Inhibition of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:2055. [PMID: 38136175 PMCID: PMC10740563 DOI: 10.3390/antiox12122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.
Collapse
Affiliation(s)
- Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Flavia Trionfetti
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Giulio Bontempi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Catalina Martín-Cleary
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Alberto Ortiz
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Adrian M. Ramos
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Raffaele Strippoli
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| |
Collapse
|
7
|
Wallen M, Aqil F, Spencer W, Gupta RC. Exosomes as an Emerging Plasmid Delivery Vehicle for Gene Therapy. Pharmaceutics 2023; 15:1832. [PMID: 37514019 PMCID: PMC10384126 DOI: 10.3390/pharmaceutics15071832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its introduction more than three decades ago, gene therapy has fallen short of its expected potential for the treatment of a broad spectrum of diseases and continues to lack widespread clinical use. The fundamental limitation in clinical translatability of this therapeutic modality has always been an effective delivery system that circumvents degradation of the therapeutic nucleic acids, ensuring they reach the intended disease target. Plasmid DNA (pDNA) for the purpose of introducing exogenous genes presents an additional challenge due to its size and potential immunogenicity. Current pDNA methods include naked pDNA accompanied by electroporation or ultrasound, liposomes, other nanoparticles, and cell-penetrating peptides, to name a few. While the topic of numerous reviews, each of these methods has its own unique set of limitations, side effects, and efficacy concerns. In this review, we highlight emerging uses of exosomes for the delivery of pDNA for gene therapy. We specifically focus on bovine milk and colostrum-derived exosomes as a nano-delivery "platform". Milk/colostrum represents an abundant, scalable, and cost-effective natural source of exosomes that can be loaded with nucleic acids for targeted delivery to a variety of tissue types in the body. These nanoparticles can be functionalized and loaded with pDNA for the exogenous expression of genes to target a wide variety of disease phenotypes, overcoming many of the limitations of current gene therapy delivery techniques.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY 40202, USA
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Augustine T, Culkin A, Soop M. Peritoneal Adhesions and Encapsulating Peritoneal Sclerosis. INTESTINAL FAILURE 2023:95-120. [DOI: 10.1007/978-3-031-22265-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Fundamentals and applications of nanobubbles: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Ogawa K, Kato N, Yoshida M, Hiu T, Matsuo T, Mizukami S, Omata D, Suzuki R, Maruyama K, Mukai H, Kawakami S. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J Control Release 2022; 348:34-41. [PMID: 35640764 DOI: 10.1016/j.jconrel.2022.05.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Messenger RNA (mRNA) medicine has become a new therapeutic approach owing to the progress in mRNA delivery technology, especially with lipid nanoparticles (LNP). However, mRNA encapsulated-LNP (mRNA-LNP) cannot spontaneously cross the blood-brain barrier (BBB) which prevents the expression of foreign proteins in the brain. Microbubble-assisted focused ultrasound (FUS) BBB opening is an emerging technology that can transiently enhance BBB permeability. In this study, FUS/microbubble-assisted BBB opening was investigated for the intravenous delivery of mRNA-LNP to the brain. The intensity of FUS irradiation was optimized to 1.5 kW/cm2, at which BBB opening occurred efficiently without hemorrhage or edema. Exogenous protein (luciferase) expression by mRNA-LNP, specifically at the FUS-irradiated side of the brain, occurred only when FUS and microbubbles were applied. This exogenous protein expression was faster but shorter than that of plasmid DNA delivery. Furthermore, foreign protein expression was observed in the microglia, along with CD31-positive endothelial cells, whereas no expression was observed in astrocytes or neurons. These results support the addition of mRNA-LNP to the lineup of nanoparticles delivered by BBB opening.
Collapse
Affiliation(s)
- Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Michiharu Yoshida
- Department of Neurosurgery, Nagasaki University, School of Medicine, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, Nagasaki University, School of Medicine, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University, School of Medicine, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga Itabashi-ku Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga Itabashi-ku Tokyo, Japan; Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-11-1 Kaga Itabashi-ku Tokyo, Japan
| | - Kazuo Maruyama
- Laboratory of Theranostics, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga Itabashi-ku Tokyo, Japan; Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-11-1 Kaga Itabashi-ku Tokyo, Japan
| | - Hidefumi Mukai
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, Japan; Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, Japan.
| |
Collapse
|
11
|
Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomater Sci Eng 2021; 7:4371-4387. [PMID: 34460238 DOI: 10.1021/acsbiomaterials.1c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of ultrasound in medicine and biological sciences is expanding rapidly beyond its use in conventional diagnostic imaging. Numerous studies have reported the effects of ultrasound on cellular and tissue physiology. Advances in instrumentation and electronics have enabled successful in vivo applications of therapeutic ultrasound. Despite path breaking advances in understanding the biophysical and biological mechanisms at both microscopic and macroscopic scales, there remain substantial gaps. With the progression of research in this area, it is important to take stock of the current understanding of the field and to highlight important areas for future work. We present herein key developments in the biological applications of ultrasound especially in the context of nanoparticle delivery, drug delivery, and regenerative medicine. We conclude with a brief perspective on the current promise, limitations, and future directions for interfacing ultrasound technology with biological systems, which could provide guidance for future investigations in this interdisciplinary area.
Collapse
|
12
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|