1
|
Pohl S, Frey K, Kleinebudde P. Towards the prediction of barrel fill level in twin-screw wet granulation. Eur J Pharm Biopharm 2024; 203:114428. [PMID: 39074596 DOI: 10.1016/j.ejpb.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The barrel fill level is defined as the fraction of the free available volume for a given screw configuration that is occupied by the wet material and is an interplay of the material throughput, screw speed, screw setup, barrel length of the twin-screw granulator used and the properties of the starting material. The fill level has a major impact on mixing and densification of the wetted mass and thus on the granules produced. It influences the twin-screw granulation process accordingly. In the current study, a model has been developed which is predictive in terms of material hold-ups in the barrel at various process settings by considering the geometries of the different screw elements in a configuration and the conveying velocity of the wet mass through the barrel. The model was checked on two granulators of different dimensions with various screw configurations, different materials and at different process settings. The model represents a step forward in predicting the barrel fill level but further research with a broader spectrum of materials, screw configurations and process settings is still needed and additional twin-screw granulators of other dimensions must be investigated.
Collapse
Affiliation(s)
- Sebastian Pohl
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstrasse 1, Building 26.22, 40225 Düsseldorf, Germany; INVITE GmbH, Drug Delivery Innovation Center, Chempark, Buildung, W32, 51368 Leverkusen, Germany.
| | - Katrina Frey
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstrasse 1, Building 26.22, 40225 Düsseldorf, Germany.
| | - Peter Kleinebudde
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstrasse 1, Building 26.22, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Kolipaka SS, Junqueira LA, Ross S, Garg V, Mithu MSH, Bhatt S, Douroumis D. An Advanced Twin-Screw Granulation Technology: The use of Non-Volatile Solvents with High Solubilizing Capacity. AAPS PharmSciTech 2024; 25:174. [PMID: 39085532 DOI: 10.1208/s12249-024-02890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE Twin-screw wet granulation (TSWG) is a manufacturing process that offers several advantages for the processing of water-insoluble active pharmaceutical ingredients (APIs) and has been used for increasing the solubility and dissolution rates. Here we introduce a novel TSWG approach with reduced downstream processing steps by using non-volatile solvents as granulating binders. METHODS Herein, TSWG was carried out using Transcutol a non-volatile protic solvent as a granulating binder and dissolution enhancer of ibuprofen (IBU) blends with cellulose polymer grades (Pharmacoat® 603, Affinisol™, and AQOAT®). RESULTS The physicochemical characterisation of the produced granules showed excellent powder flow and the complete transformation of IBU into the amorphous state. Dissolution studies presented immediate release rates for all IBU formulations due to the high drug-polymer miscibility and the Transcutol solubilising capacity. CONCLUSIONS Overall, the study demonstrated an innovative approach for the development of extruded granules by processing water-insoluble APIs with non-volatile solvents for enhanced dissolution rates at high drug loadings.
Collapse
Affiliation(s)
| | | | - Steven Ross
- Custom Pharma Services, Conway St, Brighton and Hove, Hove, BN3 3LW, UK
| | - Vivek Garg
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Central Avenue, Chatham, ME4 4TB, UK
| | | | - Saumil Bhatt
- Cubi-Tech Extrusion Ltd., Unit 3, Neptune Close, Medway City Estate, Rochester, Kent, ME2 4LU, UK
| | - Dennis Douroumis
- Centre for Research Innovation (CRI), University of Greenwich, Chatham Maritime Kent, Chatham, ME4 4TB, UK.
- Delta Pharmaceutics Ltd., 1-3 Manor Road, Chatham, Kent, ME4 6AG, UK.
| |
Collapse
|
3
|
Denduyver P, Birk G, Ambruosi A, Vervaet C, Vanhoorne V. Evaluation of Polyvinyl Alcohol as Binder during Continuous Twin Screw Wet Granulation. Pharmaceutics 2024; 16:854. [PMID: 39065551 PMCID: PMC11280237 DOI: 10.3390/pharmaceutics16070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Binder selection is a crucial step in continuous twin-screw wet granulation (TSWG), as the material experiences a much shorter residence time (2-40 s) in the granulator barrel compared to batch-wise granulation processes. Polyvinyl alcohol (PVA) 4-88 was identified as an effective binder during TSWG, but the potential of other PVA grades-differing in polymerization and hydrolysis degree-has not yet been studied. Therefore, the aim of the current study was to evaluate the potential of different PVA grades as a binder during TSWG. The breakage and drying behavior during the fluidized bed drying of drug-loaded granules containing the PVA grades was also studied. Three PVA grades (4-88, 18-88, and 40-88) were characterized and their attributes were compared to previously investigated binders by Vandevivere et al. through principal component analysis. Three binder clusters could be distinguished according to their attributes, whereby each cluster contained a PVA grade and a previously investigated binder. PVA 4-88 was the most effective binder of the PVA grades for both a good water-soluble and water-insoluble formulation. This could be attributed to its high total surface energy, low viscosity, good wettability of hydrophilic and hydrophobic surfaces, and good wettability by water of the binder. Compared to the previously investigated binders, all PVA grades were more effective in the water-insoluble formulation, as they yielded strong granules (friability below 30%) at lower L/S-ratios. This was linked to the high dispersive surface energy of the high-energy sites on the surface of PVA grades and their low surface tension. During fluidized bed drying, PVA grades proved suitable binders, as the acetaminophen (APAP) granules were dried within a short time due to the low L/S-ratio, at which high-quality granules could be produced. In addition, no attrition occurred, and strong tablets were obtained. Based on this study, PVA could be the preferred binder during twin screw granulation due to its high binder effectiveness at a low L/S-ratio, allowing efficient downstream processing. However, process robustness must be controlled by the included excipients, as PVA grades are operating in a narrow L/S-ratio range.
Collapse
Affiliation(s)
- Phaedra Denduyver
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (P.D.); (C.V.)
| | - Gudrun Birk
- Merck KGaA, Frankfuter Str. 250, 64293 Darmstadt, Germany; (G.B.); (A.A.)
| | | | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (P.D.); (C.V.)
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (P.D.); (C.V.)
| |
Collapse
|
4
|
Köster C, Kleinebudde P. Evaluation of binders in twin-screw wet granulation - Optimization of tabletability. Int J Pharm 2024; 659:124290. [PMID: 38821435 DOI: 10.1016/j.ijpharm.2024.124290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The influence of hydroxypropyl cellulose type (HPC-SSL SFP, HPC-SSL), concentration (2 %, 3.5 %, 5 %) and filler (lactose, calcium hydrogen phosphate (DCP)/microcrystalline cellulose (MCC)) on twin-screw wet granulation and subsequent tableting was studied. The aim was to identify the formulation of the highest tabletability which still fulfills the requirements of the disintegration. Lactose combined with 5 % binder enabled a higher tabletability and a faster disintegration than DCP/MCC. It was found that tabletability of lactose formulations can be increased by higher binder concentration and higher compression pressure while tabletability of DCP/MCC formulations can be only increased by higher compression pressure. It was observed that batches containing DCP/MCC failed the disintegration test, if the highest binder concentration and the highest compression pressure were used. To ensure a fast disintegration, the compression pressure or at least the binder concentration had to be low. Changing the disintegrant and its localization improved the DCP/MCC formulation, resulting in faster disintegration than lactose tablets. However, it also resulted in a lower tabletability. In this study best tablets were achieved with 3.5 % or 5 % binder and lactose as filler. These tablets presented the highest tabletability but still disintegrated in less than 500 s.
Collapse
Affiliation(s)
- Claudia Köster
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Peter Kleinebudde
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Dan A, Vaswani H, Šimonová A, Grząbka-Zasadzińska A, Li J, Sen K, Paul S, Tseng YC, Ramachandran R. End-point determination of heterogeneous formulations using inline torque measurements for a high-shear wet granulation process. Int J Pharm X 2023; 6:100188. [PMID: 37387778 PMCID: PMC10300204 DOI: 10.1016/j.ijpx.2023.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
In this study, the torque profiles of heterogeneous granulation formulations with varying powder properties in terms of particle size, solubility, deformability, and wettability, were studied, and the feasibility of identifying the end-point of the granulation process for each formulation based on the torque profiles was evaluated. Dynamic median particle size (d50) and porosity were correlated to the torque measurements to understand the relationship between torque and granule properties, and to validate distinction between different granulation stages based on the torque profiles made in previous studies. Generally, the torque curves obtained from the different granulation runs in this experimental design could be categorized into two different types of torque profiles. The primary factor influencing the likelihood of producing each profile was the binder type used in the formulation. A lower viscosity, higher solubility binder resulted in a type 1 profile. Other contributing factors that affected the torque profiles include API type and impeller speed. Material properties such as the deformability and solubility of the blend formulation and the binder were identified as important factors affecting both granule growth and the type of torque profiles observed. By correlating dynamic granule properties with torque values, it was possible to determine the granulation end-point based on a pre-determined target median particle size (d50) range which corresponded to specific markers identified in the torque profiles. In type 1 torque profiles, the end-point markers corresponded to the plateau phase, whereas in type 2 torque profiles the markers were indicated by the inflection point where the slope gradient changes. Additionally, we proposed an alternative method of identification by using the first derivative of the torque values, which facilitates an easier identification of the system approaching the end-point. Overall, this study identified the effects of different variations in formulation parameters on torque profiles and granule properties and implemented an improved method of identification of granulation end-point that is not dependent on the different types of torque profiles observed.
Collapse
Affiliation(s)
- Ashley Dan
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA 08854
| | - Haresh Vaswani
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA 08854
| | - Alice Šimonová
- Department of Analytical Chemistry, Charles University, Hlavova 2030/8, 12843, Prague, Czech Republic
- Zentiva k. s., U Kabelovny 130, Prague, Czech Republic
| | - Aleksandra Grząbka-Zasadzińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Jingzhe Li
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Koyel Sen
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Shubhajit Paul
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Yin-Chao Tseng
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT 06877, United States of America
| | - Rohit Ramachandran
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA 08854
| |
Collapse
|
6
|
Zhao J, Tian G, Qu H. Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation. Biomedicines 2023; 11:1923. [PMID: 37509561 PMCID: PMC10377609 DOI: 10.3390/biomedicines11071923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Twin-screw wet granulation (TSWG) is a method of continuous pharmaceutical manufacturing and a potential alternative method to batch granulation processes. It has attracted more and more interest nowadays due to its high efficiency, robustness, and applications. To improve both the product quality and process efficiency, the process understanding is critical. This article reviews the recent work in process understanding and optimization for TSWG. Various aspects of the progress in TSWG like process model construction, process monitoring method development, and the strategy of process control for TSWG have been thoroughly analyzed and discussed. The process modeling technique including the empirical model, the mechanistic model, and the hybrid model in the TSWG process are presented to increase the knowledge of the granulation process, and the influence of process parameters involved in granulation process on granule properties by experimental study are highlighted. The study analyzed several process monitoring tools and the associated technologies used to monitor granule attributes. In addition, control strategies based on process analytical technology (PAT) are presented as a reference to enhance product quality and ensure the applicability and capability of continuous manufacturing (CM) processes. Furthermore, this article aims to review the current research progress in an effort to make recommendations for further research in process understanding and development of TSWG.
Collapse
Affiliation(s)
- Jie Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Geng Tian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Zhou K, Liu Z, Fan R, Zhao M, Luo L, Wang Y, Jiang Y, Lu Z, Tang J, Luo A, Guan T, Sun H, Zhou T, Dai C. A new methodology of understanding the mechanism of high shear wet granulation based on experiment and molecular dynamics stimulation. Int J Pharm 2023; 638:122923. [PMID: 37030641 DOI: 10.1016/j.ijpharm.2023.122923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
In high shear wet granulation (HSWG), the interaction mechanism between binder and powder with different sugar content is still unclear. Herein, the law and mechanism of the interaction between binder and powder were studied on the molecular level by combining experiment analysis through the Kriging model and molecular dynamics (MD) simulation. For the sticky powder with high sugar content, the ethanol in the binder played a pivotal role in dispersing water into powders, and the amount of water determined the growth of granules. In the saturating stage, the reduction of sugar content facilitates the penetration of ethanol molecules. The concentration of ethanol determines whether the mixture is blended uniformly in the merging stage. The simulation results are consistent with the actual situation and explain the competition mechanism of interaction with binder and powder. Therefore, this research offers an efficient strategy for the in-depth understanding of the HSWG process where the powder is sticky, as well as providing guidelines for the practical application of preparation for TCM granules.
Collapse
Affiliation(s)
- Kangming Zhou
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Zeng Liu
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Renyu Fan
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Mengtao Zhao
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linxiu Luo
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuting Wang
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yanling Jiang
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Zheng Lu
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jincao Tang
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Anqi Luo
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tianbing Guan
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Chuanyun Dai
- Chongqing Key Laboratory of Industrial Fermentation Microorganisms, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| |
Collapse
|
8
|
Köster C, Kleinebudde P. Evaluation of binders in twin-screw wet granulation - Optimal combination of binder and disintegrant. Eur J Pharm Biopharm 2023; 186:55-64. [PMID: 36913991 DOI: 10.1016/j.ejpb.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
The influence of localization (intragranular, split or extragranular) of three superdisintegrants (croscarmellose sodium, crospovidone, sodium starch glycolate) on granules and tablets after twin-screw granulation was studied. The aim was to find a suitable disintegrant type and disintegrant localization for lactose tablets manufactured with different hydroxypropyl cellulose (HPC) types. The disintegrants were found to decrease the particle size in granulation, where sodium starch glycolate had the lowest influence. The tablet tensile strength was not influenced strongly by the disintegrant type or localization. By contrast, the disintegration was dependent on the disintegrant type as well as the localization, where sodium starch glycolate performed worst. Intragranular croscarmellose sodium and extragranular crospovidone were identified as beneficial for chosen conditions because a satisfying tensile strength in combination with the fastest disintegration was found. These findings were achieved for one HPC type and the suitability of the best disintegrant-localization-combinations were confirmed for another two HPC types.
Collapse
Affiliation(s)
- Claudia Köster
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Peter Kleinebudde
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
Menth J, Maus M, Wagner KG. Assessment of Abrasion-Induced Visual Defects in Twin Screw Wet Granulation Using Wall Friction Measurements. AAPS PharmSciTech 2022; 23:47. [PMID: 34984575 PMCID: PMC8816612 DOI: 10.1208/s12249-021-02140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Starting point of the presented study were abrasion effects occurring during a twin screw wet granulation (TSG) process of a new chemical entity (NCE) formulation, resulting in gray spots on the final tablets. Several actions and systematic changes of equipment and process parameter settings of TSG process were conducted which reduced the visual defect rate of the tablets, i.e., gray spots on the surface, below the specification limit. To understand the rationale and mechanism behind these improvements, correlations of defect rates and wall friction measurements using a Schulze ring shear tester were evaluated. To check the suitability of the method, a broad range of wall materials as well as powder formulations at various moisture levels were investigated with regard to their wall friction angle. As differences in wall friction angle could be detected, further experiments were conducted using wall material samples made out of different screw materials for TSG. Evaluation of these screw wall material samples gave first hints, which screw materials should be preferred in regard of friction for TSG process. In the finally presented case study, wall friction measurements were performed using the above mentioned NCE formulation with known abrasion issues at TSG processing. The results confirmed that changes which led to a reduced visual defect rate of tablets correlated with a decreased wall friction angle. The results suggest wall friction measurements as a potent tool for equipment selection and establishment of a suitable process window prior to conducting TSG experiments.
Collapse
|
10
|
Vanhoorne V, Kumar A. Advances in Twin-Screw Granulation. Pharmaceutics 2021; 14:pharmaceutics14010046. [PMID: 35056942 PMCID: PMC8779887 DOI: 10.3390/pharmaceutics14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg, B-9000 Ghent, Belgium
- Correspondence: (V.V.); (A.K.); Tel.: +32-(0)9-264-80-91 (V.V. & A.K.)
| | - Ashish Kumar
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg, B-9000 Ghent, Belgium
- Correspondence: (V.V.); (A.K.); Tel.: +32-(0)9-264-80-91 (V.V. & A.K.)
| |
Collapse
|
11
|
Partheniadis I, Nikolakakis I, Zacharis CK, Kachrimanis K, Al-Zoubi N. Co-Spray Drying of Paracetamol and Propyphenazone with Polymeric Binders for Enabling Compaction and Stability Improvement in a Combination Tablet. Pharmaceutics 2021; 13:pharmaceutics13081259. [PMID: 34452221 PMCID: PMC8399363 DOI: 10.3390/pharmaceutics13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Paracetamol (PCT) and propyphenazone (PRP) are analgesic drugs that are often combined in a single dosage form for enhanced pharmacological action. In this work, PCT and PRP were co-spray dried separately with hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) using drug suspensions in polymer solutions as feed liquids. It was thought that because of polymer adherence to the surface of drug particles, the risk of PCT–PRP contact and interaction could be reduced. Such interaction may be caused by localized temperature gradients due to frictional forces during tableting, or during storage under harsh conditions. A worst-case scenario would be eutectic formation due to variations in powder mixture homogeneity since eutectic and therapeutic mass PCT/PRP ratios are close (65:35 and 60:40, respectively) and eutectic temperature is low (~56 °C). Uniform particle size, round shape, compaction improvement and faster release of the analgesics were important additional benefits of co-spray drying. Experimental design was first applied for each drug to optimize the polymer concentration on the yield of spray drying and melting point separation (Δmp) of heated binary mixtures of co-spray dried PCT/neat PRP, and vice versa, with the two drugs always included at their therapeutic 60:40 ratio. Optimal combinations with largest Δmp and production yield were: co-spray dried PCT (15% HPC) with neat PRP and co-spray dried PRP (10% HPMC) with neat PCT. Compression studies of these combinations showed tableting improvement due to the polymers, as reflected in greater work of compaction and solid fraction, greater fracture toughness and tablet strength, easier tablet detachment from the punch surface and ejectability. Faster release of both drugs was obtained from the tablet of co-spray dried PCT (15% HPC) with neat PRP. A one-month stability test (75% RH/40 °C) showed moisture-induced alteration tablet strength.
Collapse
Affiliation(s)
- Ioannis Partheniadis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (K.K.)
| | - Ioannis Nikolakakis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (K.K.)
- Correspondence: ; Tel.: +30-2310-997635
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Kyriakos Kachrimanis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (K.K.)
| | - Nizar Al-Zoubi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, 13133 Zarqa, Jordan;
| |
Collapse
|