1
|
Zhu S, Li Y, Chen X, Zhu Z, Li S, Song J, Zheng Z, Cong X, Cheng S. Co-Immobilization of Alcalase/Dispase for Production of Selenium-Enriched Peptide from Cardamine violifolia. Foods 2024; 13:1753. [PMID: 38890981 PMCID: PMC11172333 DOI: 10.3390/foods13111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Enzymatically derived selenium-enriched peptides from Cardamine violifolia (CV) can serve as valuable selenium supplements. However, the industrial application of free enzyme is impeded by its limited stability and reusability. Herein, this study explores the application of co-immobilized enzymes (Alcalase and Dispase) on amino resin for hydrolyzing CV proteins to produce selenium-enriched peptides. The successful enzyme immobilization was confirmed through scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Fourier-transform infrared spectroscopy (FTIR). Co-immobilized enzyme at a mass ratio of 5:1 (Alcalase/Dispase) exhibited the smallest pore size (7.065 nm) and highest activity (41 U/mg), resulting in a high degree of hydrolysis of CV protein (27.2%), which was obviously higher than the case of using free enzymes (20.7%) or immobilized Alcalase (25.8%). In addition, after a month of storage, the co-immobilized enzyme still retained a viability level of 41.93%, showing fairly good stability. Encouragingly, the selenium-enriched peptides from co-immobilized enzyme hydrolysis exhibited uniform distribution of selenium forms, complete amino acid fractions and homogeneous distribution of molecular weight, confirming the practicality of using co-immobilized enzymes for CV protein hydrolysis.
Collapse
Affiliation(s)
- Shiyu Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, 36 Huanhu Middle Road, Wuhan 430048, China; (S.Z.); (Y.L.); (X.C.); (S.L.); (X.C.); (S.C.)
| | - Yuheng Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, 36 Huanhu Middle Road, Wuhan 430048, China; (S.Z.); (Y.L.); (X.C.); (S.L.); (X.C.); (S.C.)
| | - Xu Chen
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, 36 Huanhu Middle Road, Wuhan 430048, China; (S.Z.); (Y.L.); (X.C.); (S.L.); (X.C.); (S.C.)
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, 36 Huanhu Middle Road, Wuhan 430048, China; (S.Z.); (Y.L.); (X.C.); (S.L.); (X.C.); (S.C.)
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, 36 Huanhu Middle Road, Wuhan 430048, China; (S.Z.); (Y.L.); (X.C.); (S.L.); (X.C.); (S.C.)
| | - Jingxin Song
- Systems Engineering Institute, Beijing 100010, China;
| | | | - Xin Cong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, 36 Huanhu Middle Road, Wuhan 430048, China; (S.Z.); (Y.L.); (X.C.); (S.L.); (X.C.); (S.C.)
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, 36 Huanhu Middle Road, Wuhan 430048, China; (S.Z.); (Y.L.); (X.C.); (S.L.); (X.C.); (S.C.)
| |
Collapse
|
2
|
Estevez H, Garcia-Calvo E, Mena ML, Alvarez-Fernandez Garcia R, Luque-Garcia JL. Unraveling the Mechanisms of Ch-SeNP Cytotoxicity against Cancer Cells: Insights from Targeted and Untargeted Metabolomics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2204. [PMID: 37570523 PMCID: PMC10420838 DOI: 10.3390/nano13152204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Although chitosan-stabilized selenium nanoparticles (Ch-SeNPs) have emerged as a promising chemical form of selenium for anticancer purposes, gathering more profound knowledge related to molecular dysfunctions contributes significantly to the promotion of their evolution as a chemotherapeutic drug. In this sense, metabolites are the end products in the flow of gene expression and, thus, the most sensitive to changes in the physiological state of a biological system. Therefore, metabolomics provides a functional readout of the biochemical activity and cell state. In the present study, we evaluated alterations in the metabolomes of HepG2 cells after the exposure to Ch-SeNPs to elucidate the biomolecular mechanisms involved in their therapeutic effect. A targeted metabolomic approach was conducted to evaluate the levels of four of the main energy-related metabolites (adenosine triphosphate (ATP); adenosine diphosphate (ADP); nicotinamide adenine dinucleotide (NAD+); and 1,4-dihydronicotinamide adenine dinucleotide (NADH)), revealing alterations as a result of exposure to Ch-SeNPs related to a shortage in the energy supply system in the cell. In addition, an untargeted metabolomic experiment was performed, which allowed for the study of alterations in the global metabolic profile as a consequence of Ch-SeNP exposure. The results indicate that the TCA cycle and glycolytic pathways were impaired, while alternative pathways such as glutaminolysis and cysteine metabolism were upregulated. Additionally, increased fructose levels suggested the induction of hypoxia-like conditions. These findings highlight the potential of Ch-SeNPs to disrupt cancer cell metabolism and provide insights into the mechanisms underlying their antitumor effects.
Collapse
Affiliation(s)
| | | | | | | | - Jose L. Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.); (M.L.M.); (R.A.-F.G.)
| |
Collapse
|
3
|
Osteogenic and anti-inflammatory effects of SLA titanium substrates doped with chitosan-stabilized selenium nanoparticles via a covalent coupling strategy. Colloids Surf B Biointerfaces 2023; 224:113217. [PMID: 36868181 DOI: 10.1016/j.colsurfb.2023.113217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Osseointegration is a prerequisite for the function of dental implants, and macrophage-dominated immune responses triggered by implantation determine the outcome of ultimate bone healing mediated by osteogenic cells. The present study aimed to develop a modified titanium (Ti) surface by covalently immobilizing chitosan-stabilized selenium nanoparticles (CS-SeNPs) to sandblasted, large grit, and acid-etched (SLA) Ti substrates and further explore its surface characteristics as well as osteogenic and anti-inflammatory activities in vitro. CS-SeNPs were successfully prepared by chemical synthesis and characterized their morphology, elemental composition, particle size, and Zeta potential. Subsequently, three different concentrations of CS-SeNPs were loaded to SLA Ti substrates (Ti-Se1, Ti-Se5, and Ti-Se10) using a covalent coupling strategy, and the SLA Ti surface (Ti-SLA) was used as a control. Scanning electron microscopy images revealed different amounts of CS-SeNPs, and the roughness and wettability of Ti surfaces were less susceptible to Ti substrate pretreatment and CS-SeNP immobilization. Besides, X-ray photoelectron spectroscopy analysis showed that CS-SeNPs were successfully anchored to Ti surfaces. The results of in vitro study showed that the four as-prepared Ti surfaces exhibited good biocompatibility, with Ti-Se1 and Ti-Se5 groups showing enhanced adhesion and differentiation of MC3T3-E1 cells compared with the Ti-SLA group. In addition, Ti-Se1, Ti-Se5, and Ti-Se10 surfaces modulated the secretion of pro-/anti-inflammatory cytokines by inhibiting the nuclear factor kappa B pathway in Raw 264.7 cells. In conclusion, doping SLA Ti substrates with a modest amount of CS-SeNPs (1-5 mM) may be a promising strategy to improve the osteogenic and anti-inflammatory activities of Ti implants.
Collapse
|
4
|
Zhu S, Cong X, Sun Z, Chen Z, Chen X, Zhu Z, Li S, Cheng S. Production of Cardamine violifolia selenium-enriched peptide using immobilized Alcalase on Fe 3O 4 modified by tannic acid and polyethyleneimine. RSC Adv 2022; 12:22082-22090. [PMID: 36043101 PMCID: PMC9364077 DOI: 10.1039/d2ra03765c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Enzymatic synthesis of selenium (Se)-enriched peptides is vital for their application in supplementing organic Se. However, the poor stability and reusability of the free enzyme impedes the reaction. In this work, a highly stable immobilized Alcalase was synthesized by immobilizing Alcalase on tannic acid (TA) and polyethyleneimine (PEI) modified Fe3O4 nanoparticles (NPs). The optimal immobilization conditions for immobilized Alcalase were found at a TA/PEI (v/v) ratio of 1 : 1, pH of 10, and temperature of 40 °C, and the results from scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) characterization confirmed the successful immobilization of Alcalase. The results of an enzyme property test showed that immobilized Alcalase had higher thermal and pH stability than free Alcalase, and retained 61.0% of the initial enzyme activity after 10 repetitions. Furthermore, the organic Se content of Se-enriched peptide prepared through enzymatic hydrolysis of Cardamine violifolia (CV) protein with immobilized Alcalase was 2914 mg kg-1, and the molecular weight was mainly concentrated in 924.4 Da with complete amino acid components. Therefore, this study proposes the feasibility of immobilized enzymes for the production of Se-enriched peptides.
Collapse
Affiliation(s)
- Shiyu Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd Enshi 445000 Hubei China
| | - Zheng Sun
- College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Zhe Chen
- College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Xu Chen
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University Wuhan 430023 China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University Wuhan 430205 PR China
| |
Collapse
|
5
|
Aragoneses-Cazorla G, Buendia-Nacarino MP, Mena ML, Luque-Garcia JL. A Multi-Omics Approach to Evaluate the Toxicity Mechanisms Associated with Silver Nanoparticles Exposure. NANOMATERIALS 2022; 12:nano12101762. [PMID: 35630985 PMCID: PMC9146515 DOI: 10.3390/nano12101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) are currently used in many different industrial, commercial and health fields, mainly due to their antibacterial properties. Due to this widespread use, humans and the environment are increasingly exposed to these types of nanoparticles, which is the reason why the evaluation of the potential toxicity associated with AgNPs is of great importance. Although some of the toxic effects induced by AgNPs have already been shown, the elucidation of more complete mechanisms is yet to be achieved. In this sense, and since the integration of metabolomics and transcriptomics approaches constitutes a very useful strategy, in the present study targeted and untargeted metabolomics and DNA microarrays assays have been combined to evaluate the molecular mechanisms involved in the toxicity induced by 10 nm AgNPs. The results have shown that AgNPs induce the synthesis of glutathione as a cellular defense mechanism to face the oxidative environment, while inducing the depletion of relevant molecules implicated in the synthesis of important antioxidants. In addition, it has been observed that AgNPs completely impair the intracellular energetic metabolism, especially affecting the production of adenosine triphosphate (ATP) and disrupting the tricarboxylic acids cycle. It has been demonstrated that AgNPs exposure also affects the glycolysis pathway. The effect on such pathway differs depending on the step of the cycle, which a significant increase in the levels of glucose as way to counterbalance the depleted levels of ATP.
Collapse
|
6
|
Properties of selenium nanoparticles stabilized by Lycium barbarum polysaccharide-protein conjugates obtained with subcritical water. Int J Biol Macromol 2022; 205:672-681. [PMID: 35240216 DOI: 10.1016/j.ijbiomac.2022.02.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/02/2023]
Abstract
Selenium nanoparticles (SeNPs) in an aqueous solution have poor stability and tend to aggregate when stored for a long time. In the present study, SeNPs were stabilized by using Lycium barbarum polysaccharide (LBP) and Lycium barbarum protein (LBPr) conjugates (LBPP) as a stabilizer and dispersing agent. Particularly, the LBPP1 was obtained with subcritical water treatment. In addition, the physical stability, re-dispersity and antitumor activity of LBPP1-SeNPs were investigated. The results showed the particle size of LBPP1-SeNPs was maintained at 111.5-117 nm, which was stable at PH 6, 4 °C and darkness for at least 40 days. Besides, the result of TEM showed that the dispersion of LBPP1-SeNPs had more clear layers and smoother surfaces. Moreover, LBPP1-SeNPs had excellent re-dispersibility and exhibited a significant inhibitory effect on HepG-2 cells and Caco-2 cells, respectively (p < 0.05). Therefore, LBPP1-SeNPs can be used as potential selenium nutritional supplements for food and medical applications.
Collapse
|
7
|
Machuca A, Garcia-Calvo E, Anunciação DS, Luque-Garcia JL. Integration of Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms Underlying Rhodium Nanoparticles-Based Photodynamic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101629. [PMID: 34683922 PMCID: PMC8539937 DOI: 10.3390/pharmaceutics13101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rhodium nanoparticles have recently been described as promising photosensitizers due to their low toxicity in the absence of near-infrared irradiation, but their high cytotoxicity when irradiated. Irradiation is usually carried out with a laser source, which allows the treatment to be localized in a specific area, thus avoiding undesirable side effects on healthy tissues. In this study, a multi-omics approach based on the combination of microarray-based transcriptomics and mass spectrometry-based untargeted and targeted metabolomics has provided a global picture of the molecular mechanisms underlying the anti-tumoral effect of rhodium nanoparticle-based photodynamic therapy. The results have shown the ability of these nanoparticles to promote apoptosis by suppressing or promoting anti- and pro-apoptotic factors, respectively, and by affecting the energy machinery of tumor cells, mainly blocking the β-oxidation, which is reflected in the accumulation of free fatty acids and in the decrease in ATP, ADP and NAD+ levels.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Daniela S. Anunciação
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Brazil;
| | - Jose L. Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
- Correspondence: ; Tel.: +34-913-944-212
| |
Collapse
|