1
|
Dahma Z, Ibáñez-Escribano A, Fonseca-Berzal C, García-Rodríguez JJ, Álvarez-Álvarez C, Torrado-Salmerón C, Torrado-Santiago S, de la Torre-Iglesias PM. Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin. Polymers (Basel) 2024; 16:2174. [PMID: 39125200 PMCID: PMC11315005 DOI: 10.3390/polym16152174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Indomethacin (IND) as a non-selective cyclooxygenase 1 and 2 inhibitor administered orally causes numerous adverse effects, mostly related to the gastrointestinal tract. Moreover, when applied exogenously in topical preparations, there are obstacles to its permeation through the stratum corneum due to its low water solubility and susceptibility to photodegradation. In this work, solid dispersions (SDs) of IND with low-substituted hydroxypropyl cellulose (LHPC) were developed. The IND-SDs were incorporated into a hydroxypropyl guar (HPG) hydrogel to enhance drug solubility on the skin. The hydrogels were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), viscosity, drug release, and unspecific cytotoxicity in mammalian cells. SEM showed a highly porous structure for SD hydrogels. DSC and XRPD studies showed that amorphous IND species were formed; therefore, these hydrogels exhibited superior drug release in comparison with IND raw material hydrogels. FTIR evidenced the presence of the hydrogen bond in the SD hydrogel. The rheology parameter viscosity increased across gels formulated with SDs in comparison with hydrogels with pure IND. In addition, IND-SD hydrogels combine the advantages of a suitable viscosity for dermal use and no potentially hazardous skin irritation. This study suggests that the formulated IND-SD hydrogels represent a suitable candidate for topical administration.
Collapse
Affiliation(s)
- Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
| | - Alexandra Ibáñez-Escribano
- Departamento de Microbiología y Parasitología, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (A.I.-E.); (C.F.-B.); (J.J.G.-R.)
| | - Cristina Fonseca-Berzal
- Departamento de Microbiología y Parasitología, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (A.I.-E.); (C.F.-B.); (J.J.G.-R.)
| | - Juan José García-Rodríguez
- Departamento de Microbiología y Parasitología, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (A.I.-E.); (C.F.-B.); (J.J.G.-R.)
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
2
|
Saigo Y, Uno K, Ishigure T, Odake T, Ohta T. Pathophysiological Features of Rat Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. In Vivo 2024; 38:990-999. [PMID: 38688597 PMCID: PMC11059886 DOI: 10.21873/invivo.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) is caused by various factors, including genetic and/or environmental factors, and has complicated pathophysiological features during the development of the disease. NAFLD/NASH is recognized as an unmet medical need, and NAFLD/NASH animal models are essential tools for developing new therapies, including potential drugs and biomarkers. In this review, we describe the pathological features of the NAFLD/NASH rat models, focusing on the histopathology of hepatic fibrosis. NAFLD/NASH rat models are divided into three categories: diet-induced, genetic, and combined models based on diet, chemicals, and genetics. Rat models of NASH with hepatic fibrosis are especially expected to contribute to the development of new therapies, such as drugs and biomarkers.
Collapse
Affiliation(s)
- Yasuka Saigo
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Kinuko Uno
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Tatsuya Ishigure
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Tatsumi Odake
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Dahma Z, Torrado-Salmerón C, Álvarez-Álvarez C, Guarnizo-Herrero V, Martínez-Alonso B, Torrado G, Torrado-Santiago S, de la Torre-Iglesias PM. Topical Meloxicam Hydroxypropyl Guar Hydrogels Based on Low-Substituted Hydroxypropyl Cellulose Solid Dispersions. Gels 2024; 10:207. [PMID: 38534625 DOI: 10.3390/gels10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Meloxicam (MX) is a poorly water-soluble drug with severe gastrointestinal side effects. Topical hydrogel of hydroxypropyl guar (HPG) was formulated using a solid dispersion (SD) of MX with hydroxypropyl cellulose (LHPC) as an alternative to oral administration. The development of a solid dispersion with an adequate MX:LHPC ratio could increase the topical delivery of meloxicam. Solid dispersions showed high MX solubility values and were related to an increase in hydrophilicity. The drug/polymer and polymer/polymer interactions of solid dispersions within the HPG hydrogels were evaluated by SEM, DSC, FTIR, and viscosity studies. A porous structure was observed in the solid dispersion hydrogel MX:LHPC (1:2.5) and its higher viscosity was related to a high increase in hydrogen bonds among the -OH groups from LHPC and HPG with water molecules. In vitro drug release studies showed increases of 3.20 and 3.97-fold for hydrogels with MX:LHPC ratios of (1:1) and (1:2.5), respectively, at 2 h compared to hydrogel with pure MX. Finally, a fitting transition from zero to first-order model was observed for these hydrogels containing solid dispersions, while the n value of Korsmeyer-Peppas model indicated that release mechanism is governed by diffusion through an important relaxation of the polymer.
Collapse
Affiliation(s)
- Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Borja Martínez-Alonso
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Torrado-Salmerón C, Guarnizo-Herrero V, Torrado G, Peña MÁ, Torrado-Santiago S, de la Torre-Iglesias PM. Solid dispersions of atorvastatin with Kolliphor RH40: Enhanced supersaturation and improvement in a hyperlipidemic rat model. Int J Pharm 2023; 631:122520. [PMID: 36581105 DOI: 10.1016/j.ijpharm.2022.122520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
Atorvastatin is a potent lipid-lowering drug with poor solubility and high presystemic clearance that limits its therapeutic efficacy. The aim of this study was to develop solid dispersions and micellar systems to obtain fast-dissolving atorvastatin systems that enhances their anti-hyperlipidemic effect. Solubility and wettability studies allow the development of solid dispersions with low proportions of croscarmellose sodium as hydrophilic carrier. Solid state characterization studies indicated that the addition of Kolliphor® RH40 surfactant to solid dispersions increases intermolecular hydrogen bonding between drug and polymer chains. Dissolution studies in biorelevant Fasted State Simulate Intestinal Fluid (FaSSIF pH 6.5) medium showed for atorvastatin solid dispersion a supersaturation peak of atorvastatin followed by an aggregation/precipitation process. Only the presence of a surfactant such as Kolliphor® RH40 in atorvastatin micellar system, promotes the presence of micelles that achieve delayed recrystallization. Efficacy studies were carried out using a hyperlipidemic model of rats fed with a high- fat diet. The atorvastatin micellar system at doses of 10 mg/kg, revealed a significant improvement in serum levels of total cholesterol, low-density lipoproteins, and triglycerides compared to atorvastatin raw material. This micellar system also exhibited more beneficial effects on liver steatosis, inflammation and ballooning injury.
Collapse
Affiliation(s)
- Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain.
| | - M Ángeles Peña
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain.
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Dayar E, Pechanova O. Targeted Strategy in Lipid-Lowering Therapy. Biomedicines 2022; 10:1090. [PMID: 35625827 PMCID: PMC9138651 DOI: 10.3390/biomedicines10051090] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Dyslipidemia is characterized by a diminished lipid profile, including increased level of total cholesterol and low-density lipoprotein cholesterol (LDL-c) and reduced level of high-density lipoprotein cholesterol (HDL-c). Lipid-lowering agents represent an efficient tool for the prevention or reduction of progression of atherosclerosis, coronary heart diseases and metabolic syndrome. Statins, ezetimibe, and recently proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are the most effective and used drugs in clinical lipid-lowering therapy. These drugs are mainly aimed to lower cholesterol levels by different mechanisms of actions. Statins, the agents of the first-line therapy-known as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors-suppress the liver cholesterol synthesis. Ezetimibe as the second-line therapy can decrease cholesterol by inhibiting cholesterol absorption. Finally, the PCSK9 inhibitors act as an inducer of LDL excretion. In spite of their beneficial lipid-lowering properties, many patients suffer from their serious side effects, route of administration, or unsatisfactory physicochemical characteristics. Clinical demand for dose reduction and the improvement of bioavailability as well as pharmacodynamic and pharmacokinetic profile has resulted in the development of a new targeted therapy that includes nanoparticle carriers, emulsions or vaccination often associated with another more subtle form of administration. Targeted therapy aims to exert a more potent drug profile with lipid-lowering properties either alone or in mutual combination to potentiate their beneficial effects. This review describes the most effective lipid-lowering drugs, their favorable and adverse effects, as well as targeted therapy and alternative treatments to help reduce or prevent atherosclerotic processes and cardiovascular events.
Collapse
Affiliation(s)
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| |
Collapse
|
6
|
Queiroz M, Leandro A, Azul L, Figueirinha A, Seiça R, Sena CM. Luteolin Improves Perivascular Adipose Tissue Profile and Vascular Dysfunction in Goto-Kakizaki Rats. Int J Mol Sci 2021; 22:ijms222413671. [PMID: 34948468 PMCID: PMC8706309 DOI: 10.3390/ijms222413671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats. Methods: Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT−) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT. Results: Endothelial function was impaired in diabetic GK rats (47% (GK − PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK − PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation, p < 0.01). Vascular oxidative stress and advanced glycation end-products’ levels were increased in aortic rings (~2-fold, p < 0.05) of diabetic rats and significantly improved by luteolin treatment (to levels not significantly different from controls). Periaortic adipose tissue anti-contractile action was significantly rescued with luteolin administration (p < 0.001). In addition, luteolin treatment significantly recovered proinflammatory and pro-oxidant PVAT phenotype, and improved systemic and metabolic parameters in GK rats. Conclusions: Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Carrier Proteins/metabolism
- Chemokine CCL2/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Drug Administration Schedule
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Luteolin/administration & dosage
- Luteolin/pharmacology
- Male
- Oxidative Stress/drug effects
- Rats
- Rats, Wistar
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Adriana Leandro
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Lara Azul
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Artur Figueirinha
- LAQV, REQUIMTE, Faculty of Farmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Raquel Seiça
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
- Correspondence: ; Tel.: +351-239-480034; Fax: +351-239-480034
| |
Collapse
|