1
|
Wisniewski A, Humer D, Möller M, Kanje S, Spadiut O, Hober S. Targeted HER2-positive cancer therapy using ADAPT6 fused to horseradish peroxidase. N Biotechnol 2024; 83:74-81. [PMID: 39032630 DOI: 10.1016/j.nbt.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Targeted cancer therapy is a promising alternative to the currently established cancer treatments, aiming to selectively kill cancer cells while sparing healthy tissues. Hereby, molecular targeting agents, such as monoclonal antibodies, are used to bind to cancer cell surface markers specifically. Although these agents have shown great clinical success, limitations still remain such as low tumor penetration and off-target effects. To overcome this limitation, novel fusion proteins comprised of the two proteins ADAPT6 and Horseradish Peroxidase (HRP) were engineered. Cancer cell targeting is hereby enabled by the small scaffold protein ADAPT6, engineered to specifically bind to human epidermal growth factor receptor 2 (HER2), a cell surface marker overexpressed in various cancer types, while the enzyme HRP oxidizes the nontoxic prodrug indole-3-acetic acid (IAA) which leads to the formation of free radicals and thereby to cytotoxic effects on cancer cells. The high affinity to HER2, as well as the enzymatic activity of HRP, were still present for the ADAPT6-HRP fusion proteins. Further, in vitro cytotoxicity assay using HER2-positive SKOV-3 cells revealed a clear advantage of the fusion proteins over free HRP by association of the fusion proteins directly to the cancer cells and therefore sustained cell killing. This novel strategy of combining ADAPT6 and HRP represents a promising approach and a viable alternative to antibody conjugation for targeted cancer therapy.
Collapse
Affiliation(s)
- Andreas Wisniewski
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Diana Humer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, AT-1060 Vienna, Austria
| | - Marit Möller
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, AT-1060 Vienna, Austria
| | - Sophia Hober
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Zhang L, Zhang H. Recent advances of affibody molecules in biomedical applications. Bioorg Med Chem 2024; 113:117923. [PMID: 39278106 DOI: 10.1016/j.bmc.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Affibody molecules are 58-amino-acid peptides with a molecular weight of about 6.5 kDa, derived from the Z domain of Staphylococcal Protein A. Since they have been used as substitutes for antibodies in biomedicine, several therapeutic affibody molecules have been developed for clinical use. Additionally, affibody molecules have been designed for a range of different applications. This review focuses on the progress made in the last five years in the field of affibody molecules and their potential uses in medical imaging, especially in oncology and cancer treatment. It covers areas such as molecular imaging, targeted delivery of toxic drugs, and their use in combination with nanoparticles. We also highlight some current biomedical applications where affibody molecules are commonly used as a "guide." Due to their many advantages, affibody molecules offer significant potential for applications in both biochemical and medical fields.
Collapse
Affiliation(s)
- Liuyanlin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
3
|
Zhang J, Bodenko V, Larkina M, Bezverkhniaia E, Xu T, Liao Y, Abouzayed A, Plotnikov E, Tretyakova M, Yuldasheva F, Belousov MV, Orlova A, Tolmachev V, Gräslund T, Vorobyeva A. Half-life extension via ABD-fusion leads to higher tumor uptake of an affibody-drug conjugate compared to PAS- and XTENylation. J Control Release 2024; 370:468-478. [PMID: 38697314 DOI: 10.1016/j.jconrel.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
A critical parameter during the development of protein therapeutics is to endow them with suitable pharmacokinetic and pharmacodynamic properties. Small protein drugs are quickly eliminated by kidney filtration, and in vivo half-life extension is therefore often desired. Here, different half-life extension technologies were studied where PAS polypeptides (PAS300, PAS600), XTEN polypeptides (XTEN288, XTEN576), and an albumin binding domain (ABD) were compared for half-life extension of an anti-human epidermal growth factor receptor 2 (HER2) affibody-drug conjugate. The results showed that extension with the PAS or XTEN polypeptides or the addition of the ABD lowered the affinity for HER2 to some extent but did not negatively affect the cytotoxic potential. The half-lives in mice ranged from 7.3 h for the construct including PAS300 to 11.6 h for the construct including PAS600. The highest absolute tumor uptake was found for the construct including the ABD, which was 60 to 160% higher than the PASylated or XTENylated constructs, even though it did not have the longest half-life (9.0 h). A comparison of the tumor-to-normal-organ ratios showed the best overall performance of the ABD-fused construct. In conclusion, PASylation, XTENylation, and the addition of an ABD are viable strategies for half-life extension of affibody-drug conjugates, with the best performance observed for the construct including the ABD.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Vitalina Bodenko
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Scientific and Educational Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk 634050, Russia
| | - Maria Larkina
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk 634050, Russia
| | - Ekaterina Bezverkhniaia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Tianqi Xu
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Yunqi Liao
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Evgenii Plotnikov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Maria Tretyakova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Feruza Yuldasheva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Mikhail V Belousov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia; Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk 634050, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden.
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
4
|
Novak A, Kersaudy F, Berger S, Morisset-Lopez S, Lefoulon F, Pifferi C, Aucagne V. An efficient site-selective, dual bioconjugation approach exploiting N-terminal cysteines as minimalistic handles to engineer tailored anti-HER2 affibody conjugates. Eur J Med Chem 2023; 260:115747. [PMID: 37657270 DOI: 10.1016/j.ejmech.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Site-selective, dual-conjugation approaches for the incorporation of distinct payloads are key for the development of molecularly targeted biomolecules, such as antibody conjugates, endowed with better properties. Combinations of cytotoxic drugs, imaging probes, or pharmacokinetics modulators enabled for improved outcomes in both molecular imaging, and therapeutic settings. We have developed an efficacious dual-bioconjugation strategy to target the N-terminal cysteine of a chemically-synthesized, third-generation anti-HER2 affibody. Such two-step, one-purification approach can be carried out under mild conditions (without chaotropic agents, neutral pH) by means of a slight excess of commercially available N-hydroxysuccinimidyl esters and maleimido-functionalized payloads, to generate dual conjugates displaying drugs (DM1/MMAE) or probes (sulfo-Cy5/biotin) in high yields and purity. Remarkably, the double drug conjugate exhibited an exacerbated cytoxicity against HER2-expressing cell lines as compared to a combination of two monoconjugates, demonstrating a potent synergistic effect. Consistently, affibody-drug conjugates did not decrease the viability of HER2-negative cells, confirming their specificity for the target.
Collapse
Affiliation(s)
- Ana Novak
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Florian Kersaudy
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Sylvie Berger
- Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | | | - Carlo Pifferi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
5
|
Comparison of HER2-targeted affibody conjugates loaded with auristatin- and maytansine-derived drugs. J Control Release 2023; 355:515-527. [PMID: 36773960 DOI: 10.1016/j.jconrel.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Treatment with antibody drug conjugates targeting receptors over-expressed on cancer cells is well established for clinical use in several types of cancer, however, resistance often occurs motivating the development of novel drugs. We have recently investigated a drug conjugate consisting of an affibody molecule targeting the human epidermal growth factor receptor 2 (HER2), fused to an albumin-binding domain (ABD) for half-life extension, loaded with the cytotoxic maytansine derivative DM1. In this study, we investigated the impact of the cytotoxic payload on binding properties, cytotoxicity and biodistribution by comparing DM1 with the auristatins MMAE and MMAF, as part of the drug conjugate. All constructs had specific and high affinity binding to HER2, human and mouse albumins with values in the low- to sub-nM range. ZHER2-ABD-mcMMAF demonstrated the most potent cytotoxic effect on several HER2-over-expressing cell lines. In an experimental therapy study, the MMAF-based conjugate provided complete tumor regression in 50% of BALB/c nu/nu mice bearing HER2-over-expressing SKOV3 tumors at a 2.9 mg/kg dose, while the same dose of ZHER2-ABD-mcDM1 provided only a moderate anti-tumor effect. A comparison with the non-targeting ZTaq-ABD-mcMMAF control demonstrated HER2-targeting specificity. In conclusion, a combination of potent cytotoxicity in vitro, with minimal uptake in normal organs in vivo, and efficient delivery to tumors provided a superior anti-tumor effect of ZHER2-ABD-mcMMAF, while maintaining a favorable toxicity profile with no observed adverse effects.
Collapse
|
6
|
Garousi J, Xu T, Liu Y, Vorontsova O, Hober S, Orlova A, Tolmachev V, Gräslund T, Vorobyeva A. Experimental HER2-Targeted Therapy Using ADAPT6-ABD-mcDM1 in Mice Bearing SKOV3 Ovarian Cancer Xenografts: Efficacy and Selection of Companion Imaging Counterpart. Pharmaceutics 2022; 14:pharmaceutics14081612. [PMID: 36015242 PMCID: PMC9415843 DOI: 10.3390/pharmaceutics14081612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor 2 (HER2) in breast and gastric cancer is exploited for targeted therapy using monoclonal antibodies and antibody-drug conjugates. Small engineered scaffold proteins, such as the albumin binding domain (ABD) derived affinity proteins (ADAPTs), are a promising new format of targeting probes for development of drug conjugates with well-defined structure and tunable pharmacokinetics. Radiolabeled ADAPT6 has shown excellent tumor-targeting properties in clinical trials. Recently, we developed a drug conjugate based on the HER2-targeting ADAPT6 fused to an albumin binding domain (ABD) for increased bioavailability and conjugated to DM1 for cytotoxic action, designated as ADAPT6-ABD-mcDM1. In this study, we investigated the therapeutic efficacy of this conjugate in mice bearing HER2-expressing SKOV3 ovarian cancer xenografts. A secondary aim was to evaluate several formats of imaging probes for visualization of HER2 expression in tumors. Administration of ADAPT6-ABD-mcDM1 provided a significant delay of tumor growth and increased the median survival of the mice, in comparison with both a non-targeting homologous construct (ADAPTNeg-ABD-mcDM1) and the vehicle-treated groups, without inducing toxicity to liver or kidneys. Moreover, the evaluation of imaging probes showed that small scaffold proteins, such as 99mTc(CO)3-ADAPT6 or the affibody molecule 99mTc-ZHER2:41071, are well suited as diagnostic companions for potential stratification of patients for ADAPT6-ABD-mcDM1–based therapy.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (J.G.); (S.H.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (J.G.); (S.H.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
- Correspondence: (V.T.); (T.G.); Tel.: +46-70-425-07-82 (V.T.); +46-(0)8-790-96-27 (T.G.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (J.G.); (S.H.)
- Correspondence: (V.T.); (T.G.); Tel.: +46-70-425-07-82 (V.T.); +46-(0)8-790-96-27 (T.G.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| |
Collapse
|
7
|
Targeting Tumor Cells Overexpressing the Human Epidermal Growth Factor Receptor 3 with Potent Drug Conjugates Based on Affibody Molecules. Biomedicines 2022; 10:biomedicines10061293. [PMID: 35740315 PMCID: PMC9219639 DOI: 10.3390/biomedicines10061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that therapy targeting the human epidermal growth factor receptor 3 (HER3) could be a viable route for targeted cancer therapy. Here, we studied a novel drug conjugate, ZHER3-ABD-mcDM1, consisting of a HER3-targeting affibody molecule, coupled to the cytotoxic tubulin polymerization inhibitor DM1, and an albumin-binding domain for in vivo half-life extension. ZHER3-ABD-mcDM1 showed a strong affinity to the extracellular domain of HER3 (KD 6 nM), and an even stronger affinity (KD 0.2 nM) to the HER3-overexpressing pancreatic carcinoma cell line, BxPC-3. The drug conjugate showed a potent cytotoxic effect on BxPC-3 cells with an IC50 value of 7 nM. Evaluation of a radiolabeled version, [99mTc]Tc-ZHER3-ABD-mcDM1, showed a relatively high rate of internalization, with a 27% internalized fraction after 8 h. Further in vivo evaluation showed that it could target BxPC-3 (pancreatic carcinoma) and DU145 (prostate carcinoma) xenografts in mice, with an uptake peaking at 6.3 ± 0.4% IA/g at 6 h post-injection for the BxPC-3 xenografts. The general biodistribution showed uptake in the liver, lung, salivary gland, stomach, and small intestine, organs known to express murine ErbB3 naturally. The results from the study show that ZHER3-ABD-mcDM1 is a highly potent and selective drug conjugate with the ability to specifically target HER3 overexpressing cells. Further pre-clinical and clinical development is discussed.
Collapse
|
8
|
Xu T, Zhang J, Oroujeni M, Tretyakova MS, Bodenko V, Belousov MV, Orlova A, Tolmachev V, Vorobyeva A, Gräslund T. Effect of Inter-Domain Linker Composition on Biodistribution of ABD-Fused Affibody-Drug Conjugates Targeting HER2. Pharmaceutics 2022; 14:pharmaceutics14030522. [PMID: 35335898 PMCID: PMC8949183 DOI: 10.3390/pharmaceutics14030522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Targeted drug conjugates based on Affibody molecules fused to an albumin-binding domain (ABD) for half-life extension have demonstrated potent anti-tumor activity in preclinical therapeutic studies. Furthermore, optimization of their molecular design might increase the cytotoxic effect on tumors and minimize systemic toxicity. This study aimed to investigate the influence of length and composition of a linker between the human epidermal growth factor receptor 2 (HER2)-targeted affibody molecule (ZHER2:2891) and the ABD domain on functionality and biodistribution of affibody-drug conjugates containing a microtubulin inhibitor mertansin (mcDM1) (AffiDCs). Two conjugates, having a trimeric (S3G)3 linker or a trimeric (G3S)3 linker were produced, radiolabeled with 99mTc(CO)3, and compared side-by-side in vitro and in vivo with the original ZHER2:2891-G4S-ABD-mcDM1 conjugate having a monomeric G4S linker. Both conjugates with longer linkers had a decreased affinity to HER2 and mouse and human serum albumin in vitro, however, no differences in blood retention were observed in NMRI mice up to 24 h post injection. The use of both (S3G)3 and (G3S)3 linkers reduced liver uptake of AffiDCs by approximately 1.2-fold compared with the use of a G4S linker. This finding provides important insights into the molecular design for the development of targeted drug conjugates with reduced hepatic uptake.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
| | - Jie Zhang
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (J.Z.); (T.G.)
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
- Department of Science and Development, Affibody AB, 171 65 Solna, Sweden
| | - Maria S. Tretyakova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Vitalina Bodenko
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
| | - Mikhail V. Belousov
- Department of Pharmaceutical Analysis, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia;
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
- Correspondence: ; Tel.: +46-70-838-74-87
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (J.Z.); (T.G.)
| |
Collapse
|
9
|
Yin W, Xu T, Altai M, Oroujeni M, Zhang J, Vorobyeva A, Vorontsova O, Vtorushin SV, Tolmachev V, Gräslund T, Orlova A. The Influence of Domain Permutations of an Albumin-Binding Domain-Fused HER2-Targeting Affibody-Based Drug Conjugate on Tumor Cell Proliferation and Therapy Efficacy. Pharmaceutics 2021; 13:1974. [PMID: 34834389 PMCID: PMC8617914 DOI: 10.3390/pharmaceutics13111974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a clinically validated target for breast cancer therapy. Previously, a drug-fused HER2-targeting affinity protein construct successfully extended the survival of mice bearing HER2-expressing xenografts. The aim of this study was to evaluate the influence of the number and positioning of the protein domains in the drug conjugate. Seven HER2-targeting affibody-based constructs, including one or two affibody molecules (Z) with or without an albumin-binding domain (ABD), namely Z, Z-ABD, ABD-Z, Z-Z, Z-Z-ABD, Z-ABD-Z, and ABD-Z-Z, were evaluated on their effects on cell growth, in vivo targeting, and biodistribution. The biodistribution study demonstrated that the monomeric constructs had longer blood retention and lower hepatic uptake than the dimeric ones. A dimeric construct, specifically ABD-Z-Z, could stimulate the proliferation of HER2 expressing SKOV-3 cells in vitro and the growth of tumors in vivo, whereas the monomeric construct Z-ABD could not. These two constructs demonstrated a therapeutic effect when coupled to mcDM1; however, the effect was more pronounced for the non-stimulating Z-ABD. The median survival of the mice treated with Z-ABD-mcDM1 was 63 days compared to the 37 days for those treated with ABD-Z-Z-mcDM1 or for the control animals. Domain permutation of an ABD-fused HER2-targeting affibody-based drug conjugate significantly influences tumor cell proliferation and therapy efficacy. The monomeric conjugate Z-ABD is the most promising format for targeted delivery of the cytotoxic drug DM1.
Collapse
Affiliation(s)
- Wen Yin
- Department of Protein Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; (W.Y.); (J.Z.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Jie Zhang
- Department of Protein Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; (W.Y.); (J.Z.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Sergey V. Vtorushin
- Pathology Department, Siberian State Medical University, 634050 Tomsk, Russia;
- General and Molecular Pathology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; (W.Y.); (J.Z.)
| | - Anna Orlova
- Pathology Department, Siberian State Medical University, 634050 Tomsk, Russia;
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
10
|
Lindberg J, Nilvebrant J, Nygren PÅ, Lehmann F. Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules 2021; 26:molecules26196042. [PMID: 34641586 PMCID: PMC8512983 DOI: 10.3390/molecules26196042] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
We review drug conjugates combining a tumor-selective moiety with a cytotoxic agent as cancer treatments. Currently, antibody-drug conjugates (ADCs) are the most common drug conjugates used clinically as cancer treatments. While providing both efficacy and favorable tolerability, ADCs have limitations due to their size and complexity. Peptides as tumor-targeting carriers in peptide-drug conjugates (PDCs) offer a number of benefits. Melphalan flufenamide (melflufen) is a highly lipophilic PDC that takes a novel approach by utilizing increased aminopeptidase activity to selectively increase the release and concentration of cytotoxic alkylating agents inside tumor cells. The only other PDC approved currently for clinical use is 177Lu-dotatate, a targeted form of radiotherapy combining a somatostatin analog with a radionuclide. It is approved as a treatment for gastroenteropancreatic neuroendocrine tumors. Results with other PDCs combining synthetic analogs of natural peptide ligands with cytotoxic agents have been mixed. The field of drug conjugates as drug delivery systems for the treatment of cancer continues to advance with the application of new technologies. Melflufen provides a paradigm for rational PDC design, with a targeted mechanism of action and the potential for deepening responses to treatment, maintaining remissions, and eradicating therapy-resistant stem cells.
Collapse
Affiliation(s)
- Jakob Lindberg
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
| | - Johan Nilvebrant
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Fredrik Lehmann
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
- Correspondence: ; Tel.: +46-(0)861-520-40
| |
Collapse
|
11
|
Cancer Mechanisms and Emerging Therapies. Pharmaceutics 2021; 13:pharmaceutics13071045. [PMID: 34371736 PMCID: PMC8308996 DOI: 10.3390/pharmaceutics13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
|