1
|
Hawash M. Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors. Cells 2024; 13:1656. [PMID: 39404419 PMCID: PMC11476325 DOI: 10.3390/cells13191656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
2
|
Park IA, Noh YK, Min KW, Kim DH, Lee JY, Son BK, Kwon MJ, Han MH, Hur JY, Pyo JS. p27 Cell Cycle Inhibitor and Survival in Luminal-Type Breast Cancer: Gene Ontology, Machine Learning, and Drug Screening Analysis. J Breast Cancer 2024; 27:305-322. [PMID: 39344410 PMCID: PMC11543279 DOI: 10.4048/jbc.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE A widely distributed cell cycle inhibitor, p27, regulates cyclin-dependent kinase-cyclin complexes. Although the prognostic value of p27 has been established for various types of carcinomas, its role in luminal breast cancer remains poorly understood. This study aimed to explore the functional enrichment of p27 and identify potential drug targets in patients with luminal-type breast cancer. METHODS Clinicopathological data were collected from 868 patients with luminal-type breast cancer. Additionally, publicly available data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset (1,500 patients) and the Gene Expression Omnibus database (855 patients) were included in the analysis. Immunohistochemical staining for p27, differential gene expression analysis, disease ontology analysis, survival prediction modeling using machine learning (ML), and in vitro drug screening were also performed. RESULTS Low p27 expression correlated with younger age, advanced tumor stage, estrogen receptor/progesterone receptor negativity, decreased cluster of differentiation 8+ T cell count, and poorer survival outcomes in luminal-type breast cancer. The METABRIC data revealed that reduced cyclin-dependent kinase inhibitor 1B (CDKN1B) expression (encoding p27) was associated with cell proliferation-related pathways and epigenetic polycomb repressive complex 2. Using ML, p27 emerged as the second most significant survival factor after N stage, thereby enhancing survival model performance. Additionally, luminal-type breast cancer cell lines with low CDKN1B expression demonstrated increased sensitivity to specific anticancer drugs such as voxtalisib and serdemetan, implying a potential therapeutic synergy between CDKN1B-targeted approaches and these drugs. CONCLUSION The integration of ML and bioinformatic analyses of p27 has the potential to enhance risk stratification and facilitate personalized treatment strategies for patients with breast cancer.
Collapse
Affiliation(s)
- In Ah Park
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea.
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Joon Young Hur
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Jung Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| |
Collapse
|
3
|
Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol 2024; 16:17588359241282499. [PMID: 39371618 PMCID: PMC11450575 DOI: 10.1177/17588359241282499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Among women, breast cancer is the most prevalent form of a malignant tumour. Among the subtypes of breast cancer, hormone receptor (HR) positive and human epidermal growth factor receptor (HER2) negative kinds make up the biggest proportion. The advent of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, which are dependent on cell cycle proteins, has greatly enhanced the prognosis of patients with advanced HR+/HER2- breast cancer. This is a specific treatment that stops the growth of cancer cells by preventing them from dividing. Nevertheless, the drug resistance of the disease unavoidably impacts the effectiveness of treatment and the prognosis of patients. This report provides a thorough analysis of the current research advancements about the resistance mechanism of CDK4/6 inhibitors in HR+/HER2- breast cancer. It presents an in-depth discussion from numerous viewpoints, such as aberrant cell cycle regulation and changes in signalling pathways. In response to the drug resistance problem, subsequent treatment strategies are also being explored, including switching to other CDK4/6 inhibitor drugs, a combination of novel endocrine therapeutic agents, an optimal combination of targeted therapies and switching to chemotherapy. An in-depth study of the resistance mechanism can assist in identifying creative tactics that can overcome or postpone drug resistance, alleviate the problem of restricted treatment strategies following drug resistance and enhance the prognosis of patients.
Collapse
Affiliation(s)
- Sijia Wu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Junnan Xu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yiwen Ma
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Guilian Liang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Jiaxing Wang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Tao Sun
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, China
| |
Collapse
|
4
|
Xu S, Li Z, Xin X, An F. Curdepsidone A Induces Intrinsic Apoptosis and Inhibits Protective Autophagy via the ROS/PI3K/AKT Signaling Pathway in HeLa Cells. Mar Drugs 2024; 22:227. [PMID: 38786619 PMCID: PMC11123476 DOI: 10.3390/md22050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Among female oncology patients, cervical cancer stands as the fourth most prevalent malignancy, exerting significant impacts on their health. Over 600,000 women received the diagnosis of cervical cancer in 2020, and the illness claimed over 300,000 lives globally. Curdepsidone A, a derivative of depsidone, was isolated from the secondary metabolites of Curvularia sp. IFB-Z10. In this study, we revised the molecular structure of curdepsidone A and investigated the fundamental mechanism of the anti-tumor activity of curdepsidone A in HeLa cells for the first time. The results demonstrated that curdepsidone A caused G0/G1 phase arrest, triggered apoptosis via a mitochondrial apoptotic pathway, blocked the autophagic flux, suppressed the PI3K/AKT pathway, and increased the accumulation of reactive oxygen species (ROS) in HeLa cells. Furthermore, the PI3K inhibitor (LY294002) promoted apoptosis induced by curdepsidone A, while the PI3K agonist (IGF-1) eliminated such an effect. ROS scavenger (NAC) reduced curdepsidone A-induced cell apoptosis and the suppression of autophagy and the PI3K/AKT pathway. In conclusion, our results revealed that curdepsidone A hindered cell growth by causing cell cycle arrest, and promoted cell apoptosis by inhibiting autophagy and the ROS-mediated PI3K/AKT pathway. This study provides a molecular basis for the development of curdepsidone A as a new chemotherapy drug for cervical cancer.
Collapse
Affiliation(s)
- Sunjie Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, No. 4, Lane 218, Haiji Sixth Road, Shanghai 201306, China
| |
Collapse
|
5
|
Jiang Y, Xu S, Guo M, Lu Z, Wei X, An F, Xin X. DMC triggers MDA-MB-231 cells apoptosis via inhibiting protective autophagy and PI3K/AKT/mTOR pathway by enhancing ROS level. Toxicol In Vitro 2024; 97:105809. [PMID: 38521250 DOI: 10.1016/j.tiv.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
DMC, a kind of compound derived from the dry flower buds of Cleistocalyx operculatus, has been shown to inhibit the growth of various cancer cells, but research on triple-negative breast cancer cells remains scarce. To explore this issue, MDA-MB-231 cells were selected, and the results showed that DMC has strong proliferation inhibit effects on this kind of cells. The inhibit rate of 30 μM DMC incubated for 24 h was 56.25%, and 40.6% cells were arrested under the G2/M phase. The levels of pro-apoptosis protein Bax and active caspase-3, cleaved PARP and cell cycle related proteins, such as p21 and p27 increased, but apoptosis regulators, like Bcl-2, Cdc 2, Cyclin B1, and LC3 II decreased dramatically. In addition, DMC induced the accumulation of autophagosomes and autophagic substrates, and the combination of DMC with CQ promoted apoptosis of MDA-MB-231 cells, which suggested that DMC induced apoptosis partly by blocking autophagy flow. Moreover, the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and its mechanistic target of rapamycin kinase (mTOR) were also decreased after 30 μM DMC incubating for 24 h. The proteins play a critical role in cell proliferation, apoptosis, and autophagy modulation. The inhibition of autophagy flow and PI3K/AKT/mTOR pathway could be reversed after being treated with ROS scavenger NAC. Altogether, the results of the present study suggest that DMC effectively induces apoptosis and growth inhibition in MDA-MB-231 cells through blocking autophagy flow and regulating the PI3K/AKT/mTOR pathway by increasing ROS level.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sunjie Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miaomiao Guo
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Beijing 100048, China
| | - Zhi Lu
- Technology Center, Shanghai Inoherb Cosmetics Co. Ltd., 121 Chengyin Road, Shanghai 200083, China
| | - Xing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, No.4 Lane 218, Haiji Sixth Road, Shanghai 201306, China.
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Hu X, Xing W, Wang W. Correlation Between Messenger RNA Expression and Clinicopathological Features of Breast Cancer: A systematic review. J Cancer 2024; 15:2971-2980. [PMID: 38706916 PMCID: PMC11064247 DOI: 10.7150/jca.93607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Meta analysis was adopted to investigate the correlation between messenger ribonucleic acid (mRNA) expression and clinicopathological features of breast cancer (BC). METHODS English databases, PubMed, Web of Science, Embase, and The Cochrane Library, etc., were searched using a computer. The time range of retrieval was set to be from the establishment of the database to December 2023. The search terms were set as "mRNA", "Breast cancer", "Pathology", "Clinicopathological characteristics", etc. The literatures were screened in line with the inclusion and exclusion criteria, and the data was extracted for analysis by Revman5.3. RESULTS Finally, 5 suitable included literatures were selected, including 969 patients. The analysis results were found to reveal a significant association between mRNA expression and BC grading (OR = 0.11, 95% CI = 0.04-0.30, Z = 4.26, P<0.0001); a significant correlation was observed between mRNA expression and BC staging (OR = 0.19, 95% CI = 0.05-0.65, Z = 2.65, P = 0.008<0.05); no correlation was found between mRNA expression and menstrual status of BC patients (OR = 0.63, 95% CI = 0.22-1.78, Z = 0.88, P = 0.38>0.05); a correlation was identified between mRNA expression and tumor size in BC (OR = 0.48, 95% CI = 0.24-0.99, Z = 2.00, P = 0.05). In the Discussion section, this study, comprising 10 research studies, aimed to explore the correlation between messenger ribonucleic acid and the clinical pathological features of BC. staging and grading of BC, a certain correlation with tumor size, and no correlation with the menstrual status of BC patients.
Collapse
Affiliation(s)
| | | | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| |
Collapse
|
7
|
Zhan J, Wang J, Liang Y, Zeng X, Li E, Wang H. P53 together with ferroptosis: a promising strategy leaving cancer cells without escape. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1-14. [PMID: 38105650 PMCID: PMC10875350 DOI: 10.3724/abbs.2023270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 12/19/2023] Open
Abstract
TP53, functioning as the keeper of the genome, assumes a pivotal function in the inhibition of tumorigenesis. Recent studies have revealed that p53 regulates ferroptosis pathways within tumor cells and is closely related to tumorigenesis. Therefore, we summarize the pathways and mechanisms by which p53 regulates ferroptosis and identify a series of upstream and downstream molecules involved in this process. Furthermore, we construct a p53-ferroptosis network centered on p53. Finally, we present the progress of drugs to prevent wild-type p53 (wtp53) degeneration and restore wtp53, highlighting the deficiencies of drug development and the prospects for p53 in cancer treatment. These findings provide novel strategies and directions for future cancer therapy.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
- HuanKui AcademyNanchang UniversityNanchang330006China
| | - Jisheng Wang
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Yuqing Liang
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
| | - Xiaoping Zeng
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
- Medical CollegeJinhua PolytechnicJinhua321017China
| | - Enliang Li
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Hongmei Wang
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
- Medical CollegeJinhua PolytechnicJinhua321017China
| |
Collapse
|
8
|
Kumari A, Kashyap D, Garg VK. Osteopontin in cancer. Adv Clin Chem 2024; 118:87-110. [PMID: 38280808 DOI: 10.1016/bs.acc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Osteopontin (OPN) is a heavily post-translationally modified protein with a molecular weight of 44-70 kDa, depending on the degree of glycosylation. OPN is involved in various biological processes, including bone remodeling, immune response, cell adhesion, migration, and survival. It is essential for controlling osteoclast and osteoblast activity for maintaining bone mass and bone strength. Additionally, OPN has been linked to cardiovascular, inflammatory illnesses, as well as the onset and progression of cancer. OPN is a multifunctional protein that can interact with a variety of cell surface receptors, such as integrins, CD44, the urokinase-type plasminogen activator receptor (uPAR), as well as extracellular matrix (ECM) components (e.g. collagen and hydroxyapatite). These interactions contribute to its wide range of biological functions in general and has significant implications for bone biology, immunology and cancer, specifically. In this chapter, we summarize the structure of OPN with a focus on its molecular mechanisms of action in various cancers.
Collapse
Affiliation(s)
- Alpana Kumari
- Department of Optometry, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Dharambir Kashyap
- Department of Medicine, The Brown Centre for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
9
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Abulkalam Asath NA, Ravichandran P. Usnic acid attenuates 7,12-dimethylbenz[a] anthracene (DMBA) induced oral carcinogenesis through inhibiting oxidative stress, inflammation, and cell proliferation in male golden Syrian hamster model. J Biochem Mol Toxicol 2024; 38:e23553. [PMID: 37840363 DOI: 10.1002/jbt.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
In this study, we investigated the chemopreventive efficacy of usnic acid (UA), an effective secondary metabolite component of lichens, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinoma (OSCC) in the hamster model. Initially, the buccal pouch carcinogenesis was induced by administering 0.5% DMBA to the HBP (hamster buccal pouch) region about three times a week until the 10th week. Then, UA was orally treated with different concentrations (25, 50, 100 mg/kg b.wt) on alternative days of DMBA exposure, and the experimental process ended in the 16th week. After animal experimentation, we observed 100% tumor incidence with well-differentiated OSCC, dysplasia, and hyperplasia lesions in the DMBA-induced HBP region. Furthermore, the UA treatment of DMBA-induced hamster effectively inhibited tumor growth. In addition, UA upregulated antioxidant levels, interfered with the elevated lipid peroxidation by-product of thiobarbituric acid reactive substances, and changed the activities of the liver detoxification enzyme (Phase I and II) in DMBA-induced hamsters. Furthermore, immunohistochemical staining of inflammatory markers (iNOS and COX-2) and proliferative cell markers (cyclin-D1 and PCNA) were upregulated in the buccal pouch part of hamster animals induced with DMBA. Notably, the oral administration of UA significantly suppressed these markers during DMBA-induced hamsters. Collectively, our findings revealed that UA exhibits antioxidant, anti-inflammatory, antitumor, and apoptosis-inducing characteristics, demonstrating UA's protective properties against DMBA-induced HBP carcinogenesis.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Nihal Ahamed Abulkalam Asath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
10
|
Ibrahim MY, Hashim NM, Omer FAA, Abubakar MS, Mohammed HA, Salama SM, Jayash SN. Potential Antitumor Effect of α-Mangostin against Rat Mammary Gland Tumors Induced by LA7 Cells. Int J Mol Sci 2023; 24:10283. [PMID: 37373429 DOI: 10.3390/ijms241210283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the chemotherapeutic effect of α-mangostin (AM) was assessed in rats injected with LA7 cells. Rats received AM orally at 30 and 60 mg/kg twice a week for 4 weeks. Cancer biomarkers such as CEA and CA 15-3 were significantly lower in AM-treated rats. Histopathological evaluations showed that AM protects the rat mammary gland from the carcinogenic effects of LA7 cells. Interestingly, AM decreased lipid peroxidation and increased antioxidant enzymes when compared to the control. Immunohistochemistry results of the untreated rats showed abundant PCNA and fewer p53-positive cells than AM-treated rats. Using the TUNEL test, AM-treated animals had higher apoptotic cell numbers than those untreated. This report revealed that that AM lessened oxidative stress, suppressed proliferation, and minimized LA7-induced mammary carcinogenesis. Therefore, the current study suggests that AM has significant potential for breast cancer treatment.
Collapse
Affiliation(s)
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti of Malaya, Kuala Lumpur 50603, Malaysia
- Center for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Muhammad Salisu Abubakar
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto 840212, Nigeria
| | | | - Suzy Munir Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Sinja 25511, Sudan
| | - Soher Nagi Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK
| |
Collapse
|
11
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
12
|
Bousbaa H. Novel Anticancer Strategies II. Pharmaceutics 2023; 15:pharmaceutics15020605. [PMID: 36839927 PMCID: PMC9959780 DOI: 10.3390/pharmaceutics15020605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Owing to the exceptional complexity of the development and progression of cancer, diverse cancer types are alarmingly increasing worldwide [...].
Collapse
Affiliation(s)
- Hassan Bousbaa
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra 1317, 4585-116 Gandra, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
13
|
Janacova L, Stenckova M, Lapcik P, Hrachovinova S, Bouchalova P, Potesil D, Hrstka R, Müller P, Bouchal P. Catechol-O-methyl transferase suppresses cell invasion and interplays with MET signaling in estrogen dependent breast cancer. Sci Rep 2023; 13:1285. [PMID: 36690660 PMCID: PMC9870911 DOI: 10.1038/s41598-023-28078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). 2D and 3D assays revealed that COMT overexpression associates with decreased cell invasion (p < 0.0001 for Transwell assay, p < 0.05 for spheroid formation). RNA-Seq and LC-DIA-MS/MS proteomics identified genes associated with invasion (FTO, PIR, TACSTD2, ANXA3, KRT80, S100P, PREX1, CLEC3A, LCP1) being downregulated in MCF7-COMT cells, while genes associated with less aggressive phenotype (RBPMS, ROBO2, SELENBP, EPB41L2) were upregulated both at transcript (|log2FC|> 1, adj. p < 0.05) and protein (|log2FC|> 0.58, q < 0.05) levels. Importantly, proteins driving MET signaling were less abundant in COMT overexpressing cells, and pull-down confirmed interaction between COMT and Kunitz-type protease inhibitor 2 (SPINT2), a negative regulator of MET (log2FC = 5.10, q = 1.04-7). In conclusion, COMT may act as tumor suppressor in ER dependent BC not only by detoxification of catechol estrogens but also by suppressing cell invasion and interplay with MET pathway.
Collapse
Affiliation(s)
- Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Michaela Stenckova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Sarka Hrachovinova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Proteomics Core Facility, Central European Institute for Technology, Masaryk University, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Müller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
14
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
15
|
Gupta DS, Kaur G, Bhushan S, Sak K, Garg VK, Aggarwal D, Joshi H, Kumar P, Yerer MB, Tuli HS. Phyto nanomedicine for cancer therapy. NANOTECHNOLOGY IN HERBAL MEDICINE 2023:313-347. [DOI: 10.1016/b978-0-323-99527-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
16
|
Tuli HS, Vashishth K, Sak K, Mohapatra RK, Dhama K, Kumar M, Abbas Z, Lata K, Yerer MB, Garg VK, Sharma AK, Kaur G. Anticancer Role of Natural Phenolic Acids by Targeting Angiotensin-Converting Enzyme (ACE). ADVANCES IN BIOCHEMISTRY IN HEALTH AND DISEASE 2023:465-481. [DOI: 10.1007/978-3-031-23621-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
17
|
Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, Sak K, Yadav V, Lorenzo JM, Dhama K, Behl T, Sethi G. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection. Transl Oncol 2022; 27:101596. [PMID: 36473401 PMCID: PMC9727168 DOI: 10.1016/j.tranon.2022.101596] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sakshi Bhushan
- Department of Botany, Central University Jammu, Jammu and Kashmir 181143, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | | | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain,Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243122, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand 248007, India,Corresponding authors.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore,Corresponding authors.
| |
Collapse
|
18
|
Mohammadinejad S, Jafari-Gharabaghlou D, Zarghami N. Development of PEGylated PLGA Nanoparticles Co-Loaded with Bioactive Compounds: Potential Anticancer Effect on Breast Cancer Cell Lines. Asian Pac J Cancer Prev 2022; 23:4063-4072. [PMID: 36579986 PMCID: PMC9971482 DOI: 10.31557/apjcp.2022.23.12.4063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The incidence of breast cancer continues to rise despite decades of laboratory, epidemiological and clinical research. Breast cancer is still the leading cause of cancer death in women. Cyclin D1 is one of the most important oncoproteins associated with cancer cell proliferation and is overexpressed in more than 50% of cases. Curcumin and chrysin are plant-derived components that are believed to assist in inhibiting the viability of breast cancer cells. These agents are involved in cancer cells' growth and reducing cyclin D1 expression. In this study, the hypothesis of combining curcumin and chrysin is applied to analyze the potential synergistic effect in inhibiting cancer cell proliferation and down-regulation of cyclin D1. Furthermore, applying PLGA-PEG NPs could improve the bioavailability of free curcumin and chrysin components and at the same time increases the anti-cancer potential of this compound. METHODS PLGA-PEG NPs were synthesized via the ring-opening polymerization technique and characterized with FT-IR and FE-SEM for chemical structure and morphological characteristics, respectively. Next, curcumin and chrysin were loaded in PLGA-PEG NPs and MTT assay was performed to assess the cytotoxic effect of these agents. T-47D cells were treated with appropriate concentrations of these agents and cyclin D1 expression level was evaluated by real-time PCR. RESULTS The obtained results from FT-IR and FE-SEM techniques illustrated that curcumin and chrysin were efficiently encapsulated into PLGA-PEG NPs. Curcumin, chrysin, and curcumin-chrysin in free and nano-encapsulated forms exhibited an anti-cancer effect on T-47D cells in a time- and dose-dependent manner, especially in a combination of free and encapsulated forms demonstrated synergistic anti-cancer effects. Compared to free form, Nano-curcumin, Nano-chrysin, and Nano-combination remarkably down-regulated cyclin D1 gene expression. (p-value < 0.05). CONCLUSION Our results revealed that the curcumin-chrysin combination has a synergistic effect and the encapsulated form of this nano-component has more inhibition on cyclin D1 expression.<br />.
Collapse
Affiliation(s)
- Sina Mohammadinejad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey. ,For Correspondence:
| |
Collapse
|
19
|
RDIVpSGP motif of ASPP2 binds to 14-3-3 and enhances ASPP2/k18/14-3-3 ternary complex formulation to promote BRAF/MEK/ERK signal inhibited cell proliferation in hepatocellular carcinoma. Cancer Gene Ther 2022; 29:1616-1627. [PMID: 35504951 DOI: 10.1038/s41417-022-00474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
The Apoptosis Stimulating Protein of p53 2 (ASPP2) is a heterozygous insufficient tumor suppressor; however, its molecular mechanism(s) in tumor suppression is not completely understood. ASPP2 plays an essential role in cell growth, as shown by liver hepatocellular carcinoma (LIHC) RNA-seq assay using the Cancer Genome Atlas (TCGA) and High-Throughput-PCR assay using ASPP2 knockdown cells. These observations were further confirmed by in vivo and in vitro experiments. Mechanistically, N-terminus ASPP2 interacted with Keratin 18 (k18) in vivo and in vitro. Interestingly, the RDIVpSGP motif of ASPP2 associates with 14-3-3 and promotes ASPP2/k18/14-3-3 ternary-complex formation which promotes MEK/ERK signal activation by impairing 14-3-3 and BRAF association. Additionally, ASPP2-rAd injection promotes paclitaxel-suppressed tumor growth by suppressing cell proliferation in the BALB/c nude mice model. ASPP2 and k18 were preferentially downregulated in Hepatocellular Carcinoma (HCC), which predicted poor prognosis in HCC patients. Overall, these findings suggested that ASPP2 promoted BRAF/MEK/ERK signal activation by promoting the formation of an ASPP2/k18/14-3-3 ternary complex via the RDIVpSGP motif at the N terminus. Moreover, this study provides novel insights into the molecular mechanism of tumor suppression in HCC patients.
Collapse
|
20
|
Tuli HS, Sak K, Garg VK, Kumar A, Adhikary S, Kaur G, Parashar NC, Parashar G, Mukherjee TK, Sharma U, Jain A, Mohapatra RK, Dhama K, Kumar M, Singh T. Ampelopsin targets in cellular processes of cancer: Recent trends and advances. Toxicol Rep 2022; 9:1614-1623. [PMID: 36561961 PMCID: PMC9764188 DOI: 10.1016/j.toxrep.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is being considered as a serious threat to human health globally due to limited availability and efficacy of therapeutics. In addition, existing chemotherapeutic drugs possess a diverse range of toxic side effects. Therefore, more research is welcomed to investigate the chemo-preventive action of plant-based metabolites. Ampelopsin (dihydromyricetin) is one among the biologically active plant-based chemicals with promising anti-cancer actions. It modulates the expression of various cellular molecules that are involved in cancer progressions. For instance, ampelopsin enhances the expression of apoptosis inducing proteins. It regulates the expression of angiogenic and metastatic proteins to inhibit tumor growth. Expression of inflammatory markers has also been found to be suppressed by ampelopsin in cancer cells. The present review article describes various anti-tumor cellular targets of ampelopsin at a single podium which will help the researchers to understand mechanistic insight of this phytochemical.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India,Corresponding author.
| | | | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shubham Adhikary
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India
| | | | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151401 Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151401 Punjab, India
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243122, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala 134007, Haryana, India
| | - Tejveer Singh
- School of life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
21
|
Chimeric Oncolytic Adenovirus Armed Chemokine Rantes for Treatment of Breast Cancer. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080342. [PMID: 35892755 PMCID: PMC9332706 DOI: 10.3390/bioengineering9080342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
The immunosuppressive state in the tumor microenvironment (TME) of breast cancer makes it difficult to treat with immunotherapy. Oncolytic viruses not only lyse tumor cells but also reshape the TME. Therefore, they can play a multi-mechanism synergistic effect with immunotherapy. In this study, an oncolytic adenovirus Ad5F11bSP-Rantes was constructed and used as a vector to express the chemokine Rantes. The objective of this study was to test the dual mechanisms of the oncolytic effect mediated by virus replication and the enhanced anticancer immune response mediated by Rantes chemotaxis of immune cells. It was found that Ad5F11bSP-Rantes has strong infectivity and effective killing activity against breast cancer cells. In the established triple negative breast cancer (TNBC) xenograft model in NCG mice whose immune system was humanized with human peripheral blood mononuclear cells (PBMCs), Ad5F11bSP-Rantes achieved 88.33% tumor inhibition rate. Rantes expression was high in mouse blood, a large number of CD3+ lymphocytes infiltrated in tumor tissues and E-cadherin was up-regulated in cancer cells, suggesting that Ad5F11bSP-Rantes altered the TME and induced a reversal of cancer cell epithelial-mesenchymal transition (EMT). In conclusion, oncolytic adenovirus can exert the oncolytic effect and the chemotactic effect of immune cells and realize the synergy of multiple anticancer effects. This strategy creates a candidate treatment for the optimization of breast cancer, especially TNBC, combination therapy.
Collapse
|
22
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
23
|
Wang J, Han X, Yuan Y, Gu H, Liao X, Jiang M. The Value of Dysregulated LncRNAs on Clinicopathology and Survival in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front Genet 2022; 13:821675. [PMID: 35450214 PMCID: PMC9016135 DOI: 10.3389/fgene.2022.821675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: There is growing evidence that a number of lncRNAs are involved in the pathogenesis of non-small-cell lung cancer (NSCLC). However, studies on lncRNA expression in NSCLC patients are far from conclusive. Therefore, we performed a systematic review of such studies to collect and examine the evidence on the potential role of lncRNAs in the development of NSCLC. Methods: We systematically searched seven literature databases to identify all published studies that evaluated the expression of one or more lncRNAs in human samples with NSCLC (cases) and without NSCLC (controls) from January 1, 1995 to May 24, 2021. Quality assessment of studies was conducted by using the “Quality in Prognosis Studies” (QUIPS) tool, and the heterogeneity across studies was analyzed with the I-squared statistic and chi-square-based Q-tests. Either fixed or random-effect meta-analysis was performed to summarize effect size to investigate the association between lncRNA expression and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and clinicopathological features. The R statistical software program was used to conduct standard meta-analysis. Results: We finally obtained 48 studies with 5,211 patients included in this review after screening. Among the 48 lncRNAs, 38 lncRNAs were consistently upregulated, and 10 were deregulated in patients with NSCLC compared with the control groups. The upregulated lncRNAs were positively associated with histological type: study number (n) = 18, odds ratio (OR) = 0.78, 95% CI: 0.65–0.95 and OR = 1.30, 95% CI: 1.08–1.57, p < 0.01; TNM stages: n = 20, OR = 0.41, 95% CI: 0.29–0.57 and OR = 2.44, 95% CI: 1.73–3.44, p < 0.01; lymph node metastasis: n = 29, OR = 0.49, 95% CI: 0.34–0.71 and OR = 2.04, 95% CI: 1.40–2.96, p < 0.01; differentiation grade: n = 6, OR = 0.61, 95% CI: 0.38–0.99 and OR = 1.63, 95% CI: 1.01–2.64, p < 0.01; distant metastasis: n = 9, OR = 0.37, 95% CI: 0.26–0.53 and OR = 2.72, 95% CI: 1.90–3.90, p < 0.01; tumor size: n = 16, OR = 0.52, 95% CI: 0.43–0.64 and OR = 1.92, 95% CI: 1.57–2.34, p < 0.01; and overall survival [n = 38, hazard ratio (HR) = 1.79, 95% CI = 1.59–2.02, p < 0.01]. Especially, five upregulated lncRNAs (linc01234, ZEB1-AS1, linc00152, PVT1, and BANCR) were closely associated with TNM Ⅲa stage (n = 5, OR = 4.07, 95% CI: 2.63–6.28, p < 0.01). However, 10 deregulated lncRNAs were not significantly associated with the pathogenesis and overall survival in NSCLC in the meta-analysis (p ≥ 0.05). Conclusion: This systematic review suggests that the upregulated lncRNAs could serve as biomarkers for predicting promising prognosis of NSCLC. The prognostic value of downregulated lncRNA in NSCLC needs to be further explored. Systematic Review Registration: (http://www.crd.york.ac.uk/PROSPERO).identifier CRD42021240635.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Fan W, Ma H, Jin B. Expression of FOXM1 and PLK1 predicts prognosis of patients with hepatocellular carcinoma. Oncol Lett 2022; 23:146. [PMID: 35350587 PMCID: PMC8941521 DOI: 10.3892/ol.2022.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequently encountered malignant tumor types and to improve its treatment, effective prognostic biomarkers are urgently required. Cell cycle dysregulation is a significant feature of cancer progression. The aim of the present study was to estimate the expression levels of forkhead box protein M1 (FOXM1) and polo-like kinase 1 (PLK1), both of which have essential roles in cell cycle regulation, and determine their prognostic value in HCC. To this end, FOXM1 and PLK1 expression levels were assessed in The Cancer Genome Atlas and International Cancer Genome Consortium Japan HCC cohorts, and the associations between their co-expression were determined via Pearson's correlation analysis. Furthermore, the overall survival and disease-free survival in these cohorts for different FOXM1 and PLK1 expression statuses were analyzed. In vitro knockdown experiments were also performed using Huh7 cells. The results obtained indicated overexpression of FOXM1 and PLK1 in HCC tumor tissues as well as a positive correlation between FOXM1 and PLK1 expression. The results also suggested that both FOXM1 and PLK1 are required for HCC cell proliferation. In addition, upregulation of FOXM1 and PLK1 was indicated to be associated with poor prognosis of patients with HCC. However, only their coordinated overexpression was identified as an independent prognostic factor for HCC.
Collapse
Affiliation(s)
- Weiqiang Fan
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Ma
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Sun J, Mu J, Wang S, Jia C, Li D, Hua H, Cao H. Design and synthesis of chromone-nitrogen mustard derivatives and evaluation of anti-breast cancer activity. J Enzyme Inhib Med Chem 2021; 37:431-444. [PMID: 34957906 PMCID: PMC8725944 DOI: 10.1080/14756366.2021.2018685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chromone has emerged as one of the most important synthetic scaffolds for antitumor activity, which promotes the development of candidate drugs with better activity. In this study, a series of nitrogen mustard derivatives of chromone were designed and synthesised, in order to discover promising anti-breast tumour candidates. Almost all target derivatives showed antiproliferative activity against MCF-7 and MDA-MB-231 cell lines. In particular, methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-(5-(((6-methoxy-4-oxo-4H-chromen-3-yl)methyl)amino)-5-oxopentanamido)propanoate showed the most potent antiproliferative activity with IC50 values of 1.83 and 1.90 μM, respectively, and it also exhibited certain selectivity between tumour cells and normal cells. Further mechanism exploration against MDA-MB-231 cells showed that it possibly induced G2/M phase arrest and apoptosis by generating intracellular ROS and activating DNA damage. In addition, it also inhibited MDA-MB-231 cells metastasis, invasion and adhesion. Overall, methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-(5-(((6-methoxy-4-oxo-4H-chromen-3-yl)methyl)amino)-5-oxopentanamido)propanoate showed potent antitumor activities and relatively low side effects, and deserved further investigation.
Collapse
Affiliation(s)
- Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jiahui Mu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Shenglin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Cai Jia
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Hao Cao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China.,School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
26
|
Wei J, Sun Z, Shi L, Hu S, Liu D, Wei H. Molecular Mechanism of Chrysin in Hepatocellular Carcinoma Treatment Based on Network Pharmacology and in Vitro Experiments. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211067294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study elucidated the potential molecular mechanism of chrysin in hepatocellular carcinoma (HCC) treatment using network pharmacology and in vitro experiments. Chrysin and candidate targets of HCC were obtained from the TCMSP and DrugBank databases, followed by mapping and screening of chrysin and HCC targets to identify the core targets of chrysin in HCC treatment. The interaction of chrysin and its targets, including CDK1, CDK5, as well as MMP9, were evaluated by molecular docking. The STRING database and Cytoscape (version 3.8.2) software were used to construct protein interactions and component-target networks of the core targets. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of the core target genes were performed using the DAVID database. Network pharmacology results showed that chrysin treatment of HCC was mainly related to cell proliferation and cell cycle. Accordingly, the cell counting kit-8 method and flow cytometry were used to detect the cell viability and cell cycle of hepatocarcinoma cells HCCLM3 and BEL-7402 in vitro. A total of 142 compound targets of chrysin, 12,179 HCC-related targets, and 116 intersecting targets were screened. The first 20 GO biological annotations of 17 core targets and the first 20 KEGG pathways mainly involved cell proliferation and cell cycle. In vitro experiments showed that chrysin inhibits the proliferation of human hepatocarcinoma cells (HCCLM3 and BEL-7402) in a dose-dependent manner. Moreover, chrysin induced cell cycle arrest in HCCLM3 and BEL-7402 cells in the G2 phase, and the expression was downregulated of cyclin-dependent kinases (CDKs), CDK2 and CDK4. Chrysin can offset HCC mainly by regulating the cell cycle and inhibiting cell proliferation. The network pharmacology results were verified, providing the basis for further study on the mechanism of chrysin intervention in HCC.
Collapse
Affiliation(s)
- Jialin Wei
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhiyuan Sun
- Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Changchun University of Chinese Medicine, Changchun, China
| | - Shaodan Hu
- Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Hong Wei
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
27
|
Curcumin-induced antitumor effects on triple-negative breast cancer patient-derived xenograft tumor mice through inhibiting salt-induced kinase-3 protein. J Food Drug Anal 2021; 29:622-637. [PMID: 35649138 PMCID: PMC9931023 DOI: 10.38212/2224-6614.3387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
This study demonstrated for the first time that curcumin effectively inhibits the growth of triple-negative breast cancer (TNBC) tumors by inhibiting the expression of salt-induced kinase-3 (SIK3) protein in patient-derived xenografted tumor mice (TNBC-PDX). For TNBC patients, chemotherapy is the only option for postoperative adjuvant treatment. In this study, we detected the SIK3 mRNA expression in paired-breast cancer tissues by qPCR analysis. The results revealed that SIK3 mRNA expression was significantly higher in tumor tissues when compared to the normal adjacent tissues (73.25 times, n = 183). Thus, it is proposed for the first time that the antitumor effect induced by curcumin by targeting SIK3 can be used as a novel strategy for the therapy of TNBC tumors. In vitro mechanism studies have shown that curcumin (>25 μM) inhibits the SIK3-mediated cyclin D upregulation, thereby inhibiting the G1/S cell cycle and arresting TNBC (MDA-MB-231) cancer cell growth. The SIK3 overexpression was associated with increased mesenchymal markers (i.e., Vimentin, α-SMA, MMP3, and Twist) during epithelial-mesenchymal transition (EMT). Our results demonstrated that curcumin inhibits the SIK3-mediated EMT, effectively attenuating the tumor migration. For clinical indications, dietary nutrients (such as curcumin) as an adjuvant to chemotherapy should be helpful to TNBC patients because the current trend is to shrink the tumor with preoperative chemotherapy and then perform surgery. In addition, from the perspective of chemoprevention, curcumin has excellent clinical application value.
Collapse
|
28
|
Tuli HS, Sak K, Gupta DS, Kaur G, Aggarwal D, Chaturvedi Parashar N, Choudhary R, Yerer MB, Kaur J, Kumar M, Garg VK, Sethi G. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122663. [PMID: 34961132 PMCID: PMC8705846 DOI: 10.3390/plants10122663] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Birch tree bark-derived betulin has attracted scientific interest already for several centuries, being one of the first natural products identified from plants. However, the cellular events regulated by betulin and precise molecular mechanisms under these processes have been begun to be understood only recently. Today, we know that betulin can exert important anticancer activities through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular signaling is unraveled and presented with a special focus on its participation in anti-inflammatory processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways, betulin can not only affect the development and progression of different cancers, but also enhance the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound may provide novel possibilities for targeting inflammation-related cancers.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
- Correspondence: (H.S.T.); (G.S.)
| | | | - Dhruv Sanjay Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Jagjit Kaur
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India;
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (H.S.T.); (G.S.)
| |
Collapse
|
29
|
Welsh J. Vitamin D and Breast Cancer: Mechanistic Update. JBMR Plus 2021; 5:e10582. [PMID: 34950835 PMCID: PMC8674767 DOI: 10.1002/jbm4.10582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of the vitamin D receptor (VDR) in mammary gland and breast cancer has long been recognized, and multiple preclinical studies have demonstrated that its ligand, 1,25-dihydroxyvitamin D (1,25D), modulates normal mammary gland development and inhibits growth of breast tumors in animal models. Vitamin D deficiency is common in breast cancer patients, and some evidence suggests that low vitamin D status enhances the risk for disease development or progression. Although many 1,25D-responsive targets in normal mammary cells and in breast cancers have been identified, validation of specific targets that regulate cell cycle, apoptosis, autophagy, and differentiation, particularly in vivo, has been challenging. Model systems of carcinogenesis have provided evidence that both VDR expression and 1,25D actions change with transformation, but clinical data regarding vitamin D responsiveness of established tumors is limited and inconclusive. Because breast cancer is heterogeneous, the relevant VDR targets and potential sensitivity to vitamin D repletion or supplementation will likely differ between patient populations. Detailed analysis of VDR actions in specific molecular subtypes of the disease will be necessary to clarify the conflicting data. Genomic, proteomic, and metabolomic analyses of in vitro and in vivo model systems are also warranted to comprehensively understand the network of vitamin D-regulated pathways in the context of breast cancer heterogeneity. This review provides an update on recent studies spanning the spectrum of mechanistic (cell/molecular), preclinical (animal models), and translational work on the role of vitamin D in breast cancer. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- JoEllen Welsh
- Department of Environmental Health SciencesSUNY Albany Cancer Research CenterRensselaerNYUSA
| |
Collapse
|
30
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|