1
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
2
|
li W, Pang Y, He Q, Song Z, Xie X, Zeng J, Guo J. Exosome-derived microRNAs: emerging players in vitiligo. Front Immunol 2024; 15:1419660. [PMID: 39040109 PMCID: PMC11260631 DOI: 10.3389/fimmu.2024.1419660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are biomacromolecules and nanoscale extracellular vesicles originating from intracellular compartments that are secreted by most cells into the extracellular space. This review examines the formation and function of exosomal miRNAs in biological information transfer, explores the pathogenesis of vitiligo, and highlights the relationship between exosomal miRNAs and vitiligo. The aim is to deepen the understanding of how exosomal miRNAs influence immune imbalance, oxidative stress damage, melanocyte-keratinocyte interactions, and melanogenesis disorders in the development of vitiligo. This enhanced understanding may contribute to the development of potential diagnostic and therapeutic options for vitiligo.
Collapse
Affiliation(s)
- Wenquan li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongzou Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
4
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
5
|
Ng CY, Kee LT, Al-Masawa ME, Lee QH, Subramaniam T, Kok D, Ng MH, Law JX. Scalable Production of Extracellular Vesicles and Its Therapeutic Values: A Review. Int J Mol Sci 2022; 23:7986. [PMID: 35887332 PMCID: PMC9315612 DOI: 10.3390/ijms23147986] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are minute vesicles with lipid bilayer membranes. EVs are secreted by cells for intercellular communication. Recently, EVs have received much attention, as they are rich in biological components such as nucleic acids, lipids, and proteins that play essential roles in tissue regeneration and disease modification. In addition, EVs can be developed as vaccines against cancer and infectious diseases, as the vesicle membrane has an abundance of antigenic determinants and virulent factors. EVs for therapeutic applications are typically collected from conditioned media of cultured cells. However, the number of EVs secreted by the cells is limited. Thus, it is critical to devise new strategies for the large-scale production of EVs. Here, we discussed the strategies utilized by researchers for the scalable production of EVs. Techniques such as bioreactors, mechanical stimulation, electrical stimulation, thermal stimulation, magnetic field stimulation, topographic clue, hypoxia, serum deprivation, pH modification, exposure to small molecules, exposure to nanoparticles, increasing the intracellular calcium concentration, and genetic modification have been used to improve the secretion of EVs by cultured cells. In addition, nitrogen cavitation, porous membrane extrusion, and sonication have been utilized to prepare EV-mimetic nanovesicles that share many characteristics with naturally secreted EVs. Apart from inducing EV production, these upscaling interventions have also been reported to modify the EVs' cargo and thus their functionality and therapeutic potential. In summary, it is imperative to identify a reliable upscaling technique that can produce large quantities of EVs consistently. Ideally, the produced EVs should also possess cargo with improved therapeutic potential.
Collapse
Affiliation(s)
- Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Li Ting Kee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Qian Hui Lee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Thayaalini Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - David Kok
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
- Faculty of Applied Sciences, UCSI University, Jalan Menara Gading No. 1, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (C.Y.N.); (L.T.K.); (M.E.A.-M.); (Q.H.L.); (T.S.); (D.K.); (M.H.N.)
| |
Collapse
|
6
|
Wang Y, Cheng L, Zhao H, Li Z, Chen J, Cen Y, Zhang Z. The Therapeutic Role of ADSC-EVs in Skin Regeneration. Front Med (Lausanne) 2022; 9:858824. [PMID: 35755023 PMCID: PMC9218955 DOI: 10.3389/fmed.2022.858824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Large skin defects caused by burns, unhealing chronic wounds, and trauma, are still an intractable problem for clinicians and researchers. Ideal skin regeneration includes several intricate and dynamic stages of wound repair and regeneration of skin physiological function. Adipose-derived stem cells (ADSCs), a type of mesenchymal stem cells (MSCs) with abundant resources and micro-invasive extraction protocols, have been reported to participate in each stage of promoting skin regeneration via paracrine effects. As essential products secreted by ADSCs, extracellular vesicles (EVs) derived from ADSCs (ADSC-EVs) inherit such therapeutic potential. However, ADSC-EVs showed much more clinical superiorities than parental cells. ADSC-EVs carry various mRNAs, non-coding RNAs, proteins, and lipids to regulate the activities of recipient cells and eventually accelerate skin regeneration. The beneficial role of ADSCs in wound repair has been widely accepted, while a deep comprehension of the mechanisms of ADSC-EVs in skin regeneration remains unclear. In this review, we provided a basic profile of ADSC-EVs. Moreover, we summarized the latest mechanisms of ADSC-EVs on skin regeneration from the aspects of inflammation, angiogenesis, cell proliferation, extracellular matrix (ECM) remodeling, autophagy, and oxidative stress. Hair follicle regeneration and skin barrier repair stimulated by ADSC-EVs were also reviewed. The challenges and prospects of ADSC-EVs-based therapies were discussed at the end of this review.
Collapse
Affiliation(s)
- Yixi Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Cheng
- Department of Central Sterile Supply, West China Hospital, Sichuan University, Chengdu, China
| | - Hanxing Zhao
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
8
|
Kim K, Park J, Sohn Y, Oh CE, Park JH, Yuk JM, Yeon JH. Stability of Plant Leaf-Derived Extracellular Vesicles According to Preservative and Storage Temperature. Pharmaceutics 2022; 14:457. [PMID: 35214189 PMCID: PMC8879201 DOI: 10.3390/pharmaceutics14020457] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-derived extracellular vesicles (EVs) are capable of efficiency delivering mRNAs, miRNAs, bioactive lipids, and proteins to mammalian cells. Plant-derived EVs critically contribute to the ability of plants to defend against pathogen attacks at the plant cell surface. They also represent a novel candidate natural substance that shows potential to be developed for food, cosmetic, and pharmaceutical products. However, although plant-derived EVs are acknowledged as having potential for various industrial applications, little is known about how their stability is affected by storage conditions. In this study, we evaluated the stability of Dendropanax morbifera leaf-derived extracellular vesicles (LEVs) alone or combined with the preservatives, 1,3-butylene glycol (to yield LEVs-1,3-BG) or TMO (LEVs-TMO). We stored these formulations at -20, 4, 25, and 45 °C for up to 4 weeks, and compared the stability of fresh and stored LEVs. We also assessed the effect of freeze-thawing cycles on the quantity and morphology of the LEVs. We found that different storage temperatures and number of freeze-thawing cycles altered the stability, size distribution, protein content, surface charge, and cellular uptake of LEVs compared to those of freshly isolated LEVs. LEVs-TMO showed higher stability when stored at 4 °C, compared to LEVs and LEVs-1,3-BG. Our study provides comprehensive information on how storage conditions affect LEVs and suggests that the potential industrial applications of plant-derived EVs may be broadened by the use of preservatives.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| | - Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.P.); (J.-M.Y.)
| | - Yehjoo Sohn
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| | - Chan-Eui Oh
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| | - Ji-Ho Park
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Jong-Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.P.); (J.-M.Y.)
| | - Ju-Hun Yeon
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea; (K.K.); (Y.S.); (C.-E.O.)
| |
Collapse
|
9
|
Deng Y, Cao Y, Wang L, Ye D. The Role and Application of Salivary Exosomes in Malignant Neoplasms. Cancer Manag Res 2021; 13:5813-5820. [PMID: 34326665 PMCID: PMC8314680 DOI: 10.2147/cmar.s321225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 11/23/2022] Open
Abstract
The study of salivary exosomes in malignant neoplasms has attracted widespread attention in the clinical setting. Although a variety of diagnostic and treatment approaches have been proposed, there are some limitations to their application. In recent years, the role of salivary exosomes in cancer has been increasingly studied. Salivary exosomes not only renew and regulate the biological behavior of tumor cells, such as malignant proliferation, migration, and invasion, but they also serve as ideal markers for early diagnosis of diseases and may represent an effective therapeutic target. This article reviews the current research on salivary exosomes in malignant neoplasms.
Collapse
Affiliation(s)
- Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Yujie Cao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Liuqian Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, People's Republic of China
| |
Collapse
|