1
|
Solé RS, Radcenco AL, Moyna G, Breijo M, Pessina P. Application of 1H NMR Metabolic Profiling of Serum in Canine Multicentric Lymphoma. Vet Comp Oncol 2024. [PMID: 39648045 DOI: 10.1111/vco.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Canine lymphoma represents a biologically and metabolically heterogeneous group of neoplasms that arise from malignant transformation of lymphoid cells. An accurate diagnosis is crucial because of its impact on survival. Current diagnostic methods include clinical laboratory tests and imaging, most of which are invasive and lack sensitivity and specificity. Interestingly, recent work in cancer patients focuses on the search for biomarkers for diagnosis, investigation of treatment response mechanisms, treatment efficacy and prognosis and the discovery of tumour metabolic pathways using metabolomic analysis. In this study, we compare the metabolite profiles in serum from 37 dogs with multicentric lymphoma (22 B-cell lymphomas/LB, 9 CD45+ T-cell lymphomas/LTCD45+, 6 CD45- T-cell lymphomas/LTCD45-) and 25 healthy dogs using 1H nuclear magnetic resonance spectroscopy (NMR). 1H NMR-based metabolite profiling analysis recognised lipids and 22 metabolites, with 16 of them altered, and was shown to be an effective approach for differentiating samples from dogs with lymphoma and healthy controls based on principal component analysis of the NMR data. We also investigated variations in the serum metabolome between immunophenotypes and the control group through pairwise comparisons of the healthy against the LB, LTCD45+ and LTCD45- groups, respectively which showed similar metabolomic profiles. In addition, there were significant differences in the levels of five individual metabolites based on the univariate statistical analysis. Our results showed alterations in energy, protein and lipid metabolism, suggesting glucose, lactate, N-acetyl glycoproteins (NAGs), scyllo-inositol and choline as possible new candidate biomarkers in canine multicentric lymphoma.
Collapse
Affiliation(s)
- Rosina Sánchez Solé
- Laboratorio de Análisis Clínicos, Departamento de Clínicas y Hospital Veterinario, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Andrés López Radcenco
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Guillermo Moyna
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Martín Breijo
- Unidad de Reactivos y Biomodelos de Experimentación, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Paula Pessina
- Laboratorio de Análisis Clínicos, Departamento de Clínicas y Hospital Veterinario, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Sola-Leyva A, Jabalera Y, Jimenez-Carretero M, Lázaro M, Pozo-Gualda T, García-Vargas PJ, Luque-Navarro PM, Fasiolo A, López-Cara LC, Iglesias GR, Paz Carrasco-Jiménez M, Jiménez-López C. Directing novel ChoKα1 inhibitors using MamC-mediated biomimetic magnetic nanoparticles: a way to improve specificity and efficiency. Bioorg Chem 2024; 151:107693. [PMID: 39116523 DOI: 10.1016/j.bioorg.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Targeting phospholipid biosynthesis, specifically phosphatidylcholine (PC), which is enhanced in tumor cells, has been proven a suitable antitumor strategy. In fact, the overexpression of the choline kinase α1 (ChoKα1) isoform has been found in malignant cells and tumors, thus becoming an excellent antitumor target. ChoKα1 inhibitors are being synthesized at the present that show a large inhibitory activity. Two of them have been chosen in this study as representatives of different structural families: a biscationic biphenyl derivative of thieno[3,2-d]pyrimidinium substituted with a cyclic amine (here referred to as Fa22) and a biscationic biphenyl thioethano derivative of 7-chloro-quinolinium substituted with a pyrrolidinic moiety (here referred to as PL48). However, the potential use of these types of compounds in systemic treatments is hampered because of their low specificity. In fact, to enter the cell and reach their target, these inhibitors use choline transporters and inhibit choline uptake, being that one of the causes of their toxicity. One way to solve this problem could be allowing their entrance into the cells by alternative ways. With this goal, MamC-mediated magnetic nanoparticles (BMNPs), already proven effective drug nanocarriers, have been used to immobilize Fa22 and PL48. The idea is to let BMNPs enter the cell (they enter the cell by endocytosis) carrying these molecules, and, therefore, offering another way in for these compounds. In the present study, we demonstrate that the coupling of Fa22 and PL48 to BMNPs allows these molecules to enter the tumoral cell without completely inhibiting choline uptake, so, therefore, the use of Fa22 and PL48 in these nanoformulations reduces the toxicity compared to that of the soluble drugs. Moreover, the nanoassemblies Fa22-BMNPs and PL48-BMNPs allow the combination of chemotherapy and local hyperthermia therapies for a enhanced cytotoxic effect on the tumoral HepG2 cell line. The consistency of the results, independently of the drug structure, may indicate that this behavior could be extended to other ChoKα1 inhibitors, opening up a possibility for their potential use in clinics.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | | - Marina Lázaro
- NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain
| | - Tamara Pozo-Gualda
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pedro J García-Vargas
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pilar M Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Alberto Fasiolo
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Luisa C López-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain.
| | - Guillermo R Iglesias
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain; NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain; MNat Unit of Excellence, University of Granada, Granada 18071, Spain.
| | - María Paz Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | |
Collapse
|
3
|
Ozawa A, Iwasaki M, Yokoyama K, Tsuchiya J, Kawano R, Nishihara H, Tateishi U. Correlation between choline kinase alpha expression and 11C-choline accumulation in breast cancer using positron emission tomography/computed tomography: a retrospective study. Sci Rep 2023; 13:17620. [PMID: 37848481 PMCID: PMC10582087 DOI: 10.1038/s41598-023-44542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Choline kinase (CK) is reportedly overexpressed in various malignancies. Among its isoforms, CKα overexpression is presumably related to oncogenic change. Choline positron emission tomography (PET) is reportedly useful for detecting and evaluating therapy outcomes in malignancies. In this study, we investigated the correlation between CKα expression and 11C-choline accumulation in breast cancer cells. We also compared the CKα expression level with other pathological findings for investigating tumour activity. Fifty-six patients with breast cancer (mean age: 51 years) who underwent their first medical examination between May 2007 and December 2008 were enrolled. All the patients underwent 11C-choline PET/computed tomography imaging prior to surgery. The maximum standardised uptake value was recorded for evaluating 11C-choline accumulation. The intensity of CKα expression was classified using immunostaining. A significant correlation was observed between CKα expression and 11C-choline accumulation (P < 0.0001). A comparison of breast cancer mortality demonstrated that strong CKα expression was associated with a shorter survival time (P < 0.0001). 11C-choline accumulation was also negatively correlated with survival time (P < 0.0001). Tumours with strong CKα expression are reportedly highly active in breast cancer. A correlation was observed between CKα expression and 11C-choline accumulation, suggesting their role as prognostic indicators of breast cancer.
Collapse
Affiliation(s)
- Akane Ozawa
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masako Iwasaki
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Kota Yokoyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Ryutaro Kawano
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
4
|
Wang X, Zhang J, Zheng K, Du Q, Wang G, Huang J, Zhou Y, Li Y, Jin H, He J. Discovering metabolic vulnerability using spatially resolved metabolomics for antitumor small molecule-drug conjugates development as a precise cancer therapy strategy. J Pharm Anal 2023; 13:776-787. [PMID: 37577390 PMCID: PMC10422108 DOI: 10.1016/j.jpha.2023.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Against tumor-dependent metabolic vulnerability is an attractive strategy for tumor-targeted therapy. However, metabolic inhibitors are limited by the drug resistance of cancerous cells due to their metabolic plasticity and heterogeneity. Herein, choline metabolism was discovered by spatially resolved metabolomics analysis as metabolic vulnerability which is highly active in different cancer types, and a choline-modified strategy for small molecule-drug conjugates (SMDCs) design was developed to fool tumor cells into indiscriminately taking in choline-modified chemotherapy drugs for targeted cancer therapy, instead of directly inhibiting choline metabolism. As a proof-of-concept, choline-modified SMDCs were designed, screened, and investigated for their druggability in vitro and in vivo. This strategy improved tumor targeting, preserved tumor inhibition and reduced toxicity of paclitaxel, through targeted drug delivery to tumor by highly expressed choline transporters, and site-specific release by carboxylesterase. This study expands the strategy of targeting metabolic vulnerability and provides new ideas of developing SMDCs for precise cancer therapy.
Collapse
Affiliation(s)
- Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kailu Zheng
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qianqian Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guocai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jianpeng Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yanhe Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
5
|
Urso L, Nieri A, Borgia F, Malorgio A, Bartolomei M. Superscan-Like Pattern on 18F-Choline PET/CT in a Patient With Essential Thrombocythemia. Clin Nucl Med 2023; 48:e131-e132. [PMID: 36723898 DOI: 10.1097/rlu.0000000000004474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ABSTRACT Few clinical and preclinical articles reported the potential usefulness of 18F-choline PET/CT in several hematological proliferative diseases. We report and incidental finding of a superscan-like pattern in a patient affected by essential thrombocythemia (ET), performing 18F-choline PET/CT for a biochemical recurrence of prostate cancer. The mild elevation of PSA values and the negativity of subsequent 68Ga-PSMA-11 PET/CT allowed to correlate the diffuse skeletal uptake detected on 18F-choline PET/CT to the underlying hematologic disease, rather than to a prostate cancer relapse.
Collapse
Affiliation(s)
| | - Alberto Nieri
- Nuclear Medicine Unit, Oncological Medical and Specialists Department
| | | | - Antonio Malorgio
- U.O.C. Radiotherapy, University Hospital of Ferrara, Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department
| |
Collapse
|
6
|
Jung J, Gokhale S, Xie P. TRAF3: A novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes. Front Oncol 2023; 13:1081253. [PMID: 36776285 PMCID: PMC9911533 DOI: 10.3389/fonc.2023.1081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Mitochondria, the organelle critical for cell survival and metabolism, are exploited by cancer cells and provide an important therapeutic target in cancers. Mitochondria dynamically undergo fission and fusion to maintain their diverse functions. Proteins controlling mitochondrial fission and fusion have been recognized as essential regulators of mitochondrial functions, mitochondrial quality control, and cell survival. In a recent proteomic study, we identified the key mitochondrial fission factor, MFF, as a new interacting protein of TRAF3, a known tumor suppressor of multiple myeloma and other B cell malignancies. This interaction recruits the majority of cytoplasmic TRAF3 to mitochondria, allowing TRAF3 to regulate mitochondrial morphology, mitochondrial functions, and mitochondria-dependent apoptosis in resting B lymphocytes. Interestingly, recent transcriptomic, metabolic and lipidomic studies have revealed that TRAF3 also vitally regulates multiple metabolic pathways in B cells, including phospholipid metabolism, glucose metabolism, and ribonucleotide metabolism. Thus, TRAF3 emerges as a novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes and B cell malignancies. Here we review current knowledge in this area and discuss relevant clinical implications.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Miriam Jose A, Rasool M. Choline kinase: An underappreciated rheumatoid arthritis therapeutic target. Life Sci 2022; 309:121031. [DOI: 10.1016/j.lfs.2022.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022]
|
8
|
Li Z, Tan Y, Li X, Quan J, Bode AM, Cao Y, Luo X. DHRS2 inhibits cell growth and metastasis in ovarian cancer by downregulation of CHKα to disrupt choline metabolism. Cell Death Dis 2022; 13:845. [PMID: 36192391 PMCID: PMC9530226 DOI: 10.1038/s41419-022-05291-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/23/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.
Collapse
Affiliation(s)
- Zhenzhen Li
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Yue Tan
- grid.412017.10000 0001 0266 8918Hengyang Medical College, University of South China, Hengyang, 421001 Hunan PR China
| | - Xiang Li
- grid.216417.70000 0001 0379 7164Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China
| | - Jing Quan
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Ann M. Bode
- grid.17635.360000000419368657The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ya Cao
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China
| | - Xiangjian Luo
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078 China
| |
Collapse
|
9
|
Saito RDF, Andrade LNDS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol 2022; 13:768606. [PMID: 35250970 PMCID: PMC8889569 DOI: 10.3389/fimmu.2022.768606] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
To become resistant, cancer cells need to activate and maintain molecular defense mechanisms that depend on an energy trade-off between resistance and essential functions. Metabolic reprogramming has been shown to fuel cell growth and contribute to cancer drug resistance. Recently, changes in lipid metabolism have emerged as an important driver of resistance to anticancer agents. In this review, we highlight the role of choline metabolism with a focus on the phosphatidylcholine cycle in the regulation of resistance to therapy. We analyze the contribution of phosphatidylcholine and its metabolites to intracellular processes of cancer cells, both as the major cell membrane constituents and source of energy. We further extended our discussion about the role of phosphatidylcholine-derived lipid mediators in cellular communication between cancer and immune cells within the tumor microenvironment, as well as their pivotal role in the immune regulation of therapeutic failure. Changes in phosphatidylcholine metabolism are part of an adaptive program activated in response to stress conditions that contribute to cancer therapy resistance and open therapeutic opportunities for treating drug-resistant cancers.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
García-Molina P, Sola-Leyva A, Luque-Navarro PM, Laso A, Ríos-Marco P, Ríos A, Lanari D, Torretta A, Parisini E, López-Cara LC, Marco C, Carrasco-Jiménez MP. Anticancer Activity of the Choline Kinase Inhibitor PL48 Is Due to Selective Disruption of Choline Metabolism and Transport Systems in Cancer Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14020426. [PMID: 35214160 PMCID: PMC8876215 DOI: 10.3390/pharmaceutics14020426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of different types of cancer have been shown to be associated with an abnormal metabolism of phosphatidylcholine (PC), the main component of eukaryotic cell membranes. Indeed, the overexpression of choline kinase α1 (ChoKα1), the enzyme that catalyses the bioconversion of choline to phosphocholine (PCho), has been found to associate with cell proliferation, oncogenic transformation and carcinogenesis. Hence, ChoKα1 has been described as a possible cancer therapeutic target. Moreover, the choline transporter CTL1 has been shown to be highly expressed in several tumour cell lines. In the present work, we evaluate the antiproliferative effect of PL48, a rationally designed inhibitor of ChoKα1, in MCF7 and HepG2 cell lines. In addition, we illustrate that the predominant mechanism of cellular choline uptake in these cells is mediated by the CTL1 choline transporter. A possible correlation between the inhibition of both choline uptake and ChoKα1 activity and cell proliferation in cancer cell lines is also highlighted. We conclude that the efficacy of this inhibitor on cell proliferation in both cell lines is closely correlated with its capability to block choline uptake and ChoKα1 activity, making both proteins potential targets in cancer therapy.
Collapse
Affiliation(s)
- Pablo García-Molina
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Pilar M. Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, University of Granada, 18071 Granada, Spain;
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Alejandro Laso
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Antonio Ríos
- Department of Cell Biology, University of Granada, 18071 Granada, Spain;
| | - Daniela Lanari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Archimede Torretta
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy; (A.T.); (E.P.)
| | - Emilio Parisini
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy; (A.T.); (E.P.)
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Luisa C. López-Cara
- Department of Pharmaceutical and Organic Chemistry, University of Granada, 18071 Granada, Spain;
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| | - María P. Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| |
Collapse
|
11
|
Alfaifi A, Bahashwan S, Alsaadi M, Malhan H, Aqeel A, Al-Kahiry W, Almehdar H, Qadri I. Metabolic Biomarkers in B-Cell Lymphomas for Early Diagnosis and Prediction, as Well as Their Influence on Prognosis and Treatment. Diagnostics (Basel) 2022; 12:394. [PMID: 35204484 PMCID: PMC8871334 DOI: 10.3390/diagnostics12020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
B-cell lymphomas exhibit a vast variety of clinical and histological characteristics that might complicate the diagnosis. Timely diagnosis is crucial, as treatments for aggressive subtypes are considered successful and frequently curative, whereas indolent B-cell lymphomas are incurable and often need several therapies. The purpose of this review is to explore the current advancements achieved in B-cell lymphomas metabolism and how these indicators help to early detect metabolic changes in B-cell lymphomas and the use of predictive biological markers in refractory or relapsed disease. Since the year 1920, the Warburg effect has been known as an integral part of metabolic reprogramming. Compared to normal cells, cancerous cells require more glucose. These cancer cells undergo aerobic glycolysis instead of oxidative phosphorylation to metabolize glucose and form lactate as an end product. With the help of these metabolic alterations, a novel biomass is generated by the formation of various precursors. An aggressive metabolic phenotype is an aerobic glycolysis that has the advantage of producing high-rate ATP and preparing the biomass for the amino acid, as well as fatty acid, synthesis needed for a rapid proliferation of cells, while aerobic glycolysis is commonly thought to be the dominant metabolism in cancer cells. Later on, many metabolic biomarkers, such as increased levels of lactate dehydrogenase (LDH), plasma lactate, and deficiency of thiamine in B-cell lymphoma patients, were discovered. Various kinds of molecules can be used as biomarkers, such as genes, proteins, or hormones, because they all refer to body health. Here, we focus only on significant metabolic biomarkers in B-cell lymphomas. In conclusion, many metabolic biomarkers have been shown to have clinical validity, but many others have not been subjected to extensive testing to demonstrate their clinical usefulness in B-cell lymphoma. Furthermore, they play an essential role in the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
- Department of Hematology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- King AbdulAziz University Hospital, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Aqeel Aqeel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| |
Collapse
|
12
|
Liu Y, Gokhale S, Jung J, Zhu S, Luo C, Saha D, Guo JY, Zhang H, Kyin S, Zong WX, White E, Xie P. Mitochondrial Fission Factor Is a Novel Interacting Protein of the Critical B Cell Survival Regulator TRAF3 in B Lymphocytes. Front Immunol 2021; 12:670338. [PMID: 34745083 PMCID: PMC8564014 DOI: 10.3389/fimmu.2021.670338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Proteins controlling mitochondrial fission have been recognized as essential regulators of mitochondrial functions, mitochondrial quality control and cell apoptosis. In the present study, we identified the critical B cell survival regulator TRAF3 as a novel binding partner of the key mitochondrial fission factor, MFF, in B lymphocytes. Elicited by our unexpected finding that the majority of cytoplasmic TRAF3 proteins were localized at the mitochondria in resting splenic B cells after ex vivo culture for 2 days, we found that TRAF3 specifically interacted with MFF as demonstrated by co-immunoprecipitation and GST pull-down assays. We further found that in the absence of stimulation, increased protein levels of mitochondrial TRAF3 were associated with altered mitochondrial morphology, decreased mitochondrial respiration, increased mitochondrial ROS production and membrane permeabilization, which eventually culminated in mitochondria-dependent apoptosis in resting B cells. Loss of TRAF3 had the opposite effects on the morphology and function of mitochondria as well as mitochondria-dependent apoptosis in resting B cells. Interestingly, co-expression of TRAF3 and MFF resulted in decreased phosphorylation and ubiquitination of MFF as well as decreased ubiquitination of TRAF3. Moreover, lentivirus-mediated overexpression of MFF restored mitochondria-dependent apoptosis in TRAF3-deficient malignant B cells. Taken together, our findings provide novel insights into the apoptosis-inducing mechanisms of TRAF3 in B cells: as a result of survival factor deprivation or under other types of stress, TRAF3 is mobilized to the mitochondria through its interaction with MFF, where it triggers mitochondria-dependent apoptosis. This new role of TRAF3 in controlling mitochondrial homeostasis might have key implications in TRAF3-mediated regulation of B cell transformation in different cellular contexts. Our findings also suggest that mitochondrial fission is an actionable therapeutic target in human B cell malignancies, including those with TRAF3 deletion or relevant mutations.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Debanjan Saha
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
13
|
Schiaffino-Ortega S, Mariotto E, Luque-Navarro PM, Kimatrai-Salvador M, Rios-Marco P, Hurtado-Guerrero R, Marco C, Carrasco-Jimenez MP, Viola G, López-Cara LC. Anticancer and Structure Activity Relationship of Non-Symmetrical Choline Kinase Inhibitors. Pharmaceutics 2021; 13:pharmaceutics13091360. [PMID: 34575436 PMCID: PMC8464809 DOI: 10.3390/pharmaceutics13091360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
Choline kinase inhibitors are an outstanding class of cytotoxic compounds useful for the treatment of different forms of cancer since aberrant choline metabolism is a feature of neoplastic cells. Here, we present the most in-depth structure-activity relationship studies of an interesting series of non-symmetric choline kinase inhibitors previously reported by our group: 3a–h and 4a–h. They are characterized by cationic heads of 3-aminophenol bound to 4-(dimethylamino)- or 4-(pyrrolidin-1-yl)pyridinium through several linkers. These derivatives were evaluated both for their inhibitory activity on the enzyme and their antiproliferative activity in a panel of six human tumor cell lines. The compounds with the N-atom connected to the linker (4a–h) show the best inhibitory results, in the manner of results supported by docking studies. On the contrary, the best antiproliferative compounds were those with the O-atom bounded to the linker (3a–h). On the other hand, as was predictable in both families, the inhibitory effect on the enzyme is better the shorter the length of the linker. However, in tumor cells, lipophilicity and choline uptake inhibition could play a decisive role. Interestingly, compounds 3c and 4f, selected for both their ability to inhibit the enzyme and good antiproliferative activity, are endowed with low toxicity in non-tumoral cells (e.g., human peripheral lymphocytes) concerning cancer cells. These compounds were also able to induce apoptosis in Jurkat leukemic cells without causing significant variations of the cell cycle. It is worth mentioning that these derivatives, besides their inhibitory effect on choline kinase, displayed a modest ability to inhibit choline uptake thus suggesting that this mechanism may also contribute to the observed cytotoxicity.
Collapse
Affiliation(s)
- Santiago Schiaffino-Ortega
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.S.-O.); (P.M.L.-N.); (M.K.-S.)
| | - Elena Mariotto
- Laboratory of Oncohematology, Department of Woman’s and Child’s Health, University of Padova, 35128 Padova, Italy;
| | - Pilar María Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.S.-O.); (P.M.L.-N.); (M.K.-S.)
| | - María Kimatrai-Salvador
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.S.-O.); (P.M.L.-N.); (M.K.-S.)
| | - Pablo Rios-Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (P.R.-M.); (C.M.)
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, University of Zaragoza, 50018 Zaragoza, Spain;
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (P.R.-M.); (C.M.)
| | - María Paz Carrasco-Jimenez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (P.R.-M.); (C.M.)
- Correspondence: (M.P.C.-J.); (G.V.); (L.C.L.-C.); Tel.: +34-958-243-248 (M.P.C.-J.); +34-958-243-849 (L.C.L.-C.)
| | - Giampietro Viola
- Laboratory of Oncohematology, Department of Woman’s and Child’s Health, University of Padova, 35128 Padova, Italy;
- Correspondence: (M.P.C.-J.); (G.V.); (L.C.L.-C.); Tel.: +34-958-243-248 (M.P.C.-J.); +34-958-243-849 (L.C.L.-C.)
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.S.-O.); (P.M.L.-N.); (M.K.-S.)
- Correspondence: (M.P.C.-J.); (G.V.); (L.C.L.-C.); Tel.: +34-958-243-248 (M.P.C.-J.); +34-958-243-849 (L.C.L.-C.)
| |
Collapse
|