1
|
Mandal A, Rai R, Mandal AA, Dhar P, Banerjee S. Vitamin B 6 Appended Polypyridyl Co(III) Complexes for Photo-Triggered Antibacterial Activity. Chem Asian J 2024:e202400943. [PMID: 39258323 DOI: 10.1002/asia.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Three novel polypyridyl-Co(III)-vitamin B6 complexes viz., [Co(CF3-phtpy)(SBVB6)]Cl (Co1), [Co(anthracene-tpy)(SBVB6)]Cl (Co2), [Co(NMe2-phtpy)(SBVB6)]Cl (Co3), where 4'-(4-(trifluoromethyl)phenyl)-2,2':6',2''-terpyridine=CF3-phtpy, 4'-(anthracen-9-yl)-2,2':6',2''-terpyridine=anthracene-tpy;, 4-([2,2':6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline=NMe2-phtpy, (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol=H2SBVB6 were successfully developed for aPDT (antibacterial photodynamic therapy) applications. Co1-Co3 exhibited an intense absorption band at ca. 435-485 nm, which is attributed to ligand-to-metal charge transfer and was beneficial for antibacterial photodynamic therapy. The distorted octahedral geometry of the complexes with CoIIIN4O2 core was evident from the DFT study. The visible light absorption ability and good photo-stability of Co1-Co3 made them good photosensitizers for aPDT. Co1-Co3 displayed significant antibacterial responses against gram-positive (S. aureus) and gram-negative (E. coli) bacteria upon light exposure (10 J cm-2 , 400-700 nm) and showed MIC values between 0.01-0.005 μg mL-1. The aPDT activities of these complexes were due to their ability to damage bacterial cell membranes via ROS generation. Overall, this study shows the photo-triggered ROS-mediated bacteria-killing potential of Co(III) complexes.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
2
|
Saha M, Mandal S, Sarkar S, Biswas A, Ghati A, Cordes DB, Slawin AMZ, Saha NC. Anticancer, antimicrobial and photocatalytic activities of a new pyrazole containing thiosemicarbazone ligand and its Co(III) and Ni(II) complexes: Synthesis, spectroscopic characterization and X-ray crystallography. J Inorg Biochem 2024; 257:112577. [PMID: 38714060 DOI: 10.1016/j.jinorgbio.2024.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
A new pyrazole based thiosemicarbazone ligand, 5-methyl-3-formylpyrazole-N(4)-isopropylthiosemicarbazone, (HMPzNHPri) (compound I), and its cobalt(III) and nickel(II) complexes, [Co(MPzNHPri)2]Cl (compound II) and [Ni(HMPzNHPri)2]Br2 (compound III), respectively, have been synthesized and characterized through various physico-chemical and spectroscopic studies. Both the reported Co(III) and Ni(II) complexes are cationic in nature and behave as 1:1 and 1:2 electrolytes in MeOH, respectively. Electronic spectral features of the complexes have classified them as distorted octahedral ones. IR spectral data (4000-450 cm-1) have suggested a monoprotic tridentate (NNS) function of compound I coordinating to the Co(III) ion via the pyrazolyl (tertiary) ring nitrogen, azomethine nitrogen and thiolato sulphur atom; while for compound III, compound I has been found to act as neutral NNS tridentate one, coordinating to Ni(II) via the pyrazolyl iminic nitrogen, azomethine nitrogen and thioketo sulphur. Structural features of all the compounds are confirmed by the single crystal X-ray data. All the compounds reported here have been found to exhibit significant photocatalytic activity towards degradation of Methylene Blue (MB) under UV radiation. Anticancer activity of all the three compounds against cancer cell lines (HeLa and A549) and a normal cell line (HEK293) have been investigated. Compound II has been found to be more efficient against the human cervical cancer cell (HeLa) and the lung cancer cell (A549) than compounds I and III. The ligand and both the complexes display potential activities against both gram-positive (Bacillus subtilis MTCC 7193) and gram-negative bacteria (E. coli MTCC 1610).
Collapse
Affiliation(s)
- Manan Saha
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India; Government General Degree College, Chapra, Sikra, Padmamala, 741123 Nadia, West Bengal, India
| | - Suman Mandal
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Solanki Sarkar
- Cell & Molecular Biology Laboratory, Department of Zoology, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Arunima Biswas
- Cell & Molecular Biology Laboratory, Department of Zoology, University of Kalyani, 741235 Nadia, West Bengal, India
| | - Amit Ghati
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, 700120, West Bengal, India
| | - David B Cordes
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Nitis Chandra Saha
- Inorganic Chemistry Section, Department of Chemistry, University of Kalyani, 741235 Nadia, West Bengal, India.
| |
Collapse
|
3
|
Hałasa R, Turecka K, Mizerska U, Krauze-Baranowska M. Anti- Helicobacter pylori Biofilm Extracts from Rubus idaeus and Rubus occidentalis. Pharmaceutics 2024; 16:501. [PMID: 38675162 PMCID: PMC11054215 DOI: 10.3390/pharmaceutics16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Helicobacter pylori infections are still an important health problem and are directly related to the development of gastric ulcer, gastric adenocarcinoma, mucosal lymphoid tissue lymphoma, and diabetes. At the same time, the number of substances/drugs effective against these bacteria is limited due to increasing resistance. Raw plant materials from various species of the Rubus genus-fruits and shoots-have shown antimicrobial activity in numerous studies against different bacteria, including H. pylori in a planktonic form. Research carried out on a model using fragments of intravenous infusions and triphenyl tetrazolium chloride (TTC) as a dye showed that the shoot extract of Rubus idaeus 'Willamette', the fruit extract of R. idaeus 'Poranna Rosa', R. idaeus and R. idaeus 'Laszka', and R. occidentalis Litacz' prevent the formation of biofilm by H. pylori. Active concentrations inhibiting biofilm formation were 6.65 mg/mL for shoots and 16.65 mg/mL for fruits. However, in the resulting biofilm, the extract from the shoots of R. idaeus 'Willamette' and the fruit of R. idaeus 'Poranna Rosa' at a concentration of 16.65 mg/mL was active against living bacteria, and the remaining extracts showed such activity at a concentration of 33.3 mg/mL. In studies on the interaction of the extract with antibiotics on biofilm, the extract from the shoots of R. idaeus 'Willamette' showed synergy with doxycycline and levofloxacin, additivity with amoxicillin and clarithromycin, and neutrality with metronidazole. H. pylori biofilm research was carried out in a newly elaborated research model-culture on fragments of intravenous infusions with the addition of TTC as a marker of living bacterial cells. The research results may constitute the basis for the development of new combination therapies for the treatment of H. pylori infections, including its resistant strains. The proposed new biofilm research model, which is cheap and effective, may allow testing of new substances that are potentially more effective against H. pylori and other biofilm-forming bacterial strains.
Collapse
Affiliation(s)
- Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Urszula Mizerska
- Department of Polymeric Nanomaterials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland;
| | | |
Collapse
|
4
|
Turecka K, Chylewska A, Dąbrowska AM, Hałasa R, Orlewska C, Waleron K. Ru(II) Oxygen Sensors for Co(III) Complexes and Amphotericin B Antifungal Activity Detection by Phosphorescence Optical Respirometry. Int J Mol Sci 2023; 24:ijms24108744. [PMID: 37240092 DOI: 10.3390/ijms24108744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The measurement of oxygen consumption is an important element in the understanding of an organism's metabolic state. Oxygen is also a phosphorescence quencher, which allows the evaluation of phosphorescence emitted by oxygen sensors. Two Ru(II)-based oxygen-sensitive sensors were used to study the effect of chemical compounds [(1) = [CoCl2(dap)2]Cl, and (2) = [CoCl2(en)2]Cl (AmB = amphotericin B) against reference and clinical strains of Candida albicans. The tris-[(4,7-diphenyl-1,10-phenanthroline)ruthenium(II)] chloride ([Ru(DPP)3]Cl2) (Box) adsorbed onto the DavisilTM silica gel was embedded in the silicone rubber Lactite NuvaSil® 5091 and the coating on the bottom of 96-well plates. The water-soluble oxygen sensor (BsOx = tris-[(4,7-diphenyl-1,10-phenanthrolinedisulphonic acid disodium)ruthenium(II)] chloride 'x' hydrate = {Ru[DPP(SO3Na)2]3}Cl2 = water molecules were omitted in the BsOx formula) was synthesized and characterized by RP-UHPLC, LCMS, MALDI, elemental analysis, ATR, UV-Vis, 1H NMR, and TG/IR techniques. The microbiological studies were performed in the environment of RPMI broth and blood serum. Both Ru(II)-based sensors turned out to be useful in the study of the activity of Co(III) complexes and the commercial antifungal drug amphotericin B. In addition, a new activity of the oxygen sensor, the soluble Ru(II) complex BsOx, was demonstrated, which is a mixture with amphotericin B that caused a significant increase in its antifungal activity. Thus, it is also possible to demonstrate the synergistic effect of compounds active against the microorganisms under study.
Collapse
Affiliation(s)
- Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, al. Hallera 107, 80-416 Gdańsk, Poland
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Aleksandra M Dąbrowska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, al. Hallera 107, 80-416 Gdańsk, Poland
| | - Czesława Orlewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, al. Hallera 107, 80-416 Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, al. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
5
|
Waziri I, Yusuf TL, Akintemi E, Kelani MT, Muller A. Spectroscopic, crystal structure, antimicrobial and antioxidant evaluations of new Schiff base compounds: An experimental and theoretical study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
7
|
Jia H, Niu M, Sun R, Wang A, Wu YB, Lu L, Zhu M, Feng S, Yuan C. Crystal structure, TCPTP inhibition and cytotoxicity of the cobalt(II) complex with the 4‐{[3‐(pyridine‐2‐yl)‐1H‐pyrazol‐1‐yl]methyl}‐benzoic acid ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
DNA interaction and BSA binding of O-vanillin-based new Schiff base Co(III) and Ni(II) complexes: Theoretical, experimental, antibacterial and anticancer studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|