1
|
Gupta S, Luxami V, Paul K. Unlocking the Antibacterial Potential of Naphthalimide-Coumarins to Overcome Drug Resistance with Antibiofilm and Membrane Disruption Ability against Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39772461 DOI: 10.1021/acsami.4c13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Resistance by bacteria to available antibiotics is a threat to human health, which demands the development of new antibacterial agents. Considering the prevailing conditions, we have developed a library of new naphthalimide-coumarin moieties as broad-spectrum antibacterial agents to fight against awful drug resistance. Preliminary studies indicate that compounds 8e and 8h display excellent antibacterial activity against Escherichia coli, exceeding the performance of marketed drug amoxicillin. These drug candidates effectively inhibit biofilm formation and disrupt the biofilm virulence factor, which is accountable for the formation of strong biofilm. In addition to this, both compounds exhibit fast bactericidal properties, thus shortening the time of treatment and resisting the emergence of drug resistance for up to 20 passages. Further, biofunctional evaluation reveals that both compounds effectively disrupt the membrane, causing the leakage of cytoplasmic contents and loss in metabolic activity. Both compounds 8e and 8h efficiently induce the ROS, leading to the oxidation of GSH to GSSG, decreasing the GSH activity of the cell, and causing oxidative damage to the cells. Additionally, both compounds effectively bind with DNA to block DNA replication and form supramolecular complexes, thus exhibiting antibacterial activity. Moreover, these compounds readily bind human serum albumin with high binding constants and can be transported to the target site easily. These findings reveal that newly synthesized naphthalimide-coumarin conjugates have the potential to build as potent antibacterial agents and can be used further for clinical trials.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
2
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
3
|
Kobryń J, Demski P, Raszewski B, Zięba T, Musiał W. Effect of Co-Solvents, Modified Starch and Physical Parameters on the Solubility and Release Rate of Cryptotanshinone from Alcohologels. Molecules 2024; 29:5877. [PMID: 39769966 PMCID: PMC11678525 DOI: 10.3390/molecules29245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: The aim of the work was to investigate the influence of selected physico-chemical factors on the solubility and release rate of CT (cryptotanshinone) in alcohologels. (2) Methods: The alcohologels of methylcellulose (MC), hydroksyethylcellulose (HEC), polyacrylic acid (PA) and polyacrylic acid crosspolymer (PACP) with CT were prepared and/or doped with native potato starch (SN) and modified citrate starches (SM2.5 and SM10). The analytical methods included evaluation of CT release profiles, Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and electrospray ionization mass spectrometry (ESI-MS), and scanning electron microscope (SEM) images were performed. (3) Results: The release and decomposition kinetics of CT in relation to the phosphate buffer solution (PBS) and methanol were observed. The amount of cryptotanshinone (CT) released into PBS was significantly lower (2.5%) compared to its release into methanol, where 22.5% of the CT was released into the model medium. The addition of SM2.5 to the alcohologel significantly increased the CT content to 70% in the alcohologel preparation containing NaOH (40%), and this enhanced stability was maintained for up to two months. The ATR-FTIR exhibited interactions between PA and 2-amino-2-methyl-1,3-propanediol (AMPD) as well as between PA and NaOH in case of the alcohologels. Moreover, it indicated the interaction between CT and NaOH. PXRD diffractograms confirmed the FTIR study. (4) Conclusions: The study observed the influence of a number of factors on the solubility and release rate of CT, as: alkalizers and their concentration, SM2.5 addition. The transition of CT in the presence of NaOH to the tanshinone V sodium (T-V sodium) form was suspected.
Collapse
Affiliation(s)
- Justyna Kobryń
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| | - Patryk Demski
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| | - Bartosz Raszewski
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (B.R.); (T.Z.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (B.R.); (T.Z.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| |
Collapse
|
4
|
Wang X, Wan W, Lu J, Liu P. Inhalable FN-binding liposomes or liposome-exosome hybrid bionic vesicles encapsulated microparticles for enhanced pulmonary fibrosis therapy. Int J Pharm 2024; 656:124096. [PMID: 38583821 DOI: 10.1016/j.ijpharm.2024.124096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.
Collapse
Affiliation(s)
- Xiuhua Wang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zhang J, Tan YM, Li SR, Battini N, Zhang SL, Lin JM, Zhou CH. Discovery of benzopyridone cyanoacetates as new type of potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 265:116107. [PMID: 38171147 DOI: 10.1016/j.ejmech.2023.116107] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Zhang J, Battini N, Ou JM, Zhang SL, Zhang L, Zhou CH. New Efforts toward Aminothiazolylquinolones with Multitargeting Antibacterial Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2322-2332. [PMID: 36700862 DOI: 10.1021/acs.jafc.2c08293] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
New antibacterial 3-(aminothiazolyl)quinolones (ATQs) were designed and efficiently synthesized to counteract the growing multidrug resistance in animal husbandry. Bioactive assays manifested that N,N-dicyclohexylaminocarbonyl ATQ 10e and methyl ATQ 17a, respectively, showed better antibacterial behavior against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa than reference drug norfloxacin. Notably, highly active ATQ 17a with low hemolysis, negligible mammalian cytotoxicity, and good pharmacokinetic properties displayed low trends to induce resistance and synergistic combinations with norfloxacin. Preliminary mechanism exploration implied that representative ATQ 17a could inhibit the formation of biofilms and destroy bacterial membrane integrity, further binding to intracellular DNA and DNA gyrase to hinder bacterial DNA replication. ATQ 17a could also induce the production of excess reactive oxygen species and reduce bacterial metabolism to accelerate bacterial death. These results provided a promise for 3-(aminothiazolyl)quinolones as new potential multitargeting antibacterial agents to treat bacterial infection of animals.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Ming Ou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Bioactive Molecules from Plants: Discovery and Pharmaceutical Applications. Pharmaceutics 2022; 14:pharmaceutics14102116. [PMID: 36297551 PMCID: PMC9608623 DOI: 10.3390/pharmaceutics14102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
|
8
|
Nano Modification of Antrodia Cinnamomea Exhibits Anti-Inflammatory Action and Improves the Migratory Potential of Myogenic Progenitors. Cells 2022; 11:cells11162512. [PMID: 36010589 PMCID: PMC9406806 DOI: 10.3390/cells11162512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
The skeletal muscle progenitors’ proliferation and migration are crucial stages of myogenesis. Identifying drug candidates that contribute to myogenesis can have a positive impact on atrophying muscle. The purpose of the study is to synthesize the Antrodia cinnamomea (AC)-β-cyclodextrin (BCD) inclusion complex (IC) and understand its in vitro pro-regenerative influence in murine skeletal C2C12 myoblasts. The IC was subjected to various nano-characterization studies. Fluorescent IC was synthesized to understand the cellular uptake of IC. Furthermore, 25 µg/mL, 12.5 µg/mL, and 6.25 µg/mL of IC were tested on murine C2C12 skeletal muscle cells for their anti-inflammatory, pro-migratory, and pro-proliferative action. The cellular internalization of IC occurred rapidly via pinocytosis. IC (252.6 ± 3.2 nm size and −37.24 ± 1.55 surface charge) exhibited anti-inflammatory action by suppressing the secretion of interleukin-6 and enhanced cell proliferation with promising cytocompatibility. A 12.5 μg/mL dose of IC promoted cell migration in 24 h, but the same dose of AC significantly reduced cell migration, suggesting modification by BCD. Molecular studies revealed that IC promoted C2C12 myoblasts migration by upregulating long non-coding RNA (lncRNA) NEAT-1, SYISL, and activating the pPKC/β-catenin pathway. Our study is the first report on the pro-proliferative and pro-migratory effects of BCD-modified extracts of AC.
Collapse
|