1
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
2
|
Moret F, Varchi G. Drug Delivery in Photodynamic Therapy. Pharmaceutics 2023; 15:1784. [PMID: 37513971 PMCID: PMC10385038 DOI: 10.3390/pharmaceutics15071784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) has gained prominence as a non-invasive and selective treatment option for solid tumors and non-oncological diseases [...].
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40121 Bologna, Italy
| |
Collapse
|
3
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
4
|
Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers (Basel) 2022; 14:cancers14184462. [PMID: 36139623 PMCID: PMC9496990 DOI: 10.3390/cancers14184462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present review represents the outstanding and promising recent literature reports (2017–2022) on nanoparticle-based formulations developed for anticancer therapy with photodynamic therapy (PDT), photosensitizers, and chemotherapeutics. Besides brief descriptions of chemotherapeutics’ classification and of PDT mechanisms and limitations, several examples of nanosystems endowed with different responsiveness (e.g., acidic pH and reactive oxygen species) and peculiarity (e.g., tumor oxygenation capacity, active tumor targeting, and biomimetic features) are described, and for each drug combination, in vitro and in vivo results on preclinical cancer models are reported. Abstract The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models.
Collapse
Affiliation(s)
- Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Celeste Milani
- Department of Biology, University of Padova, 35100 Padova, Italy
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, 40129 Bologna, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| |
Collapse
|
5
|
Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022; 348:672-691. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant tumor remains a huge threat to human health and chemotherapy still occupies an important place in clinical tumor treatment. As a kind of potent antimitotic agent, taxanes act as the first-line broad-spectrum cancer drug in clinical use. However, disadvantages such as prominent hydrophobicity, severe off-target toxicity or multidrug resistance lead to unsatisfactory therapeutic effects, which restricts its wider usage. The efficient delivery of taxanes is still quite a challenge despite the rapid developments in biomaterials and nanotechnology. Great progress has been made in prodrug-based nanomedicines (PNS) for cancer therapy due to their outstanding advantages such as high drug loading efficiency, low carrier induced immunogenicity, tumor stimuli-responsive drug release, combinational therapy and so on. Based on the numerous developments in this filed, this review summarized latest updates of taxanes prodrugs-based nanomedicines (TPNS), focusing on polymer-drug conjugate-based nanoformulations, small molecular prodrug-based self-assembled nanoparticles and prodrug-encapsulated nanosystems. In addition, the new trends of tumor stimuli-responsive TPNS were also discussed. Moreover, the future challenges of TPNS for clinical translation were highlighted. We here expect this review will inspire researchers to explore more practical taxanes prodrug-based nano-delivery systems for clinical use.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Menghan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jiayi Leng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yixin Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
6
|
Martella E, Dozza B, Ferroni C, Obeyok CO, Guerrini A, Tedesco D, Manet I, Sotgiu G, Columbaro M, Ballestri M, Martini L, Fini M, Lucarelli E, Varchi G, Duchi S. Two Beats One: Osteosarcoma Therapy with Light-Activated and Chemo-Releasing Keratin Nanoformulation in a Preclinical Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14030677. [PMID: 35336051 PMCID: PMC8950553 DOI: 10.3390/pharmaceutics14030677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma treatment is moving towards more effective combination therapies. Nevertheless, these approaches present distinctive challenges that can complicate the clinical translation, such as increased toxicity and multi-drug resistance. Drug co-encapsulation within a nanoparticle formulation can overcome these challenges and improve the therapeutic index. We previously synthetized keratin nanoparticles functionalized with Chlorin-e6 (Ce6) and paclitaxel (PTX) to combine photo (PDT) and chemotherapy (PTX) regimens, and the inhibition of osteosarcoma cells growth in vitro was demonstrated. In the current study, we generated an orthotopic osteosarcoma murine model for the preclinical evaluation of our combination therapy. To achieve maximum reproducibility, we systematically established key parameters, such as the number of cells to generate the tumor, the nanoparticles dose, the design of the light-delivery device, the treatment schedule, and the irradiation settings. A 60% engrafting rate was obtained using 10 million OS cells inoculated intratibial, with the tumor model recapitulating the histological hallmarks of the human counterpart. By scheduling the treatment as two cycles of injections, a 32% tumor reduction was obtained with PTX mono-therapy and a 78% reduction with the combined PTX-PDT therapy. Our findings provide the in vivo proof of concept for the subsequent clinical development of a combination therapy to fight osteosarcoma.
Collapse
Affiliation(s)
- Elisa Martella
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Barbara Dozza
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123 Bologna, Italy;
| | - Claudia Ferroni
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Clement Osuru Obeyok
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Andrea Guerrini
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Daniele Tedesco
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Ilse Manet
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Giovanna Sotgiu
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Marco Ballestri
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
| | - Lucia Martini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (M.F.)
| | - Milena Fini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (M.F.)
| | - Enrico Lucarelli
- Regenerative Therapies in Oncology of the Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
- Correspondence: (G.V.); (S.D.); Tel.: +39-051-6398283 (G.V.)
| | - Serena Duchi
- Institute for the Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), 40129 Bologna, Italy; (E.M.); (C.F.); (C.O.O.); (A.G.); (D.T.); (I.M.); (G.S.); (M.B.)
- Department of Surgery, St. Vincent’s Hospital Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia
- Correspondence: (G.V.); (S.D.); Tel.: +39-051-6398283 (G.V.)
| |
Collapse
|
7
|
HSA-Binding Prodrugs-Based Nanoparticles Endowed with Chemo and Photo-Toxicity against Breast Cancer. Cancers (Basel) 2022; 14:cancers14040877. [PMID: 35205627 PMCID: PMC8870514 DOI: 10.3390/cancers14040877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Exploiting the tumor environment features (EPR effect, elevated glutathione, reactive oxygen species levels) might allow attaining a selective and responsive carrier capable of improving the therapeutic outcome. To this purpose, the in situ covalent binding of drugs and nanoparticles to circulating human serum albumin (HSA) might represent a pioneering approach to achieve an effective strategy. This study describes the synthesis, in vitro and in vivo evaluation of bioresponsive HSA-binding nanoparticles (MAL-PTX2S@Pba), co-delivering two different paclitaxel (PTX) prodrugs and the photosensitizer pheophorbide a (Pba), for the combined photo- and chemo-treatment of breast cancer. Stable and reproducible MAL-PTX2S@Pba nanoparticles with an average diameter of 82 nm and a PTX/Pba molar ratio of 2.5 were obtained by nanoprecipitation. The in vitro 2D combination experiments revealed that MAL-PTX2S@Pba treatment induces a strong inhibition of cell viability of MDA-MB-231, MCF7 and 4T1 cell lines, whereas 3D experiments displayed different trends: while MAL-PTX2S@Pba effectiveness was confirmed against MDA-MB-231 spheroids, the 4T1 model exhibited marked resistance. Lastly, despite using a low PTX-PDT regimen (e.g., 8.16 mg/Kg PTX and 2.34 mg/Kg Pba), our formulation showed to foster primary tumor reduction and curb lung metastases growth in 4T1 tumor-bearing mice, thus setting the basis for further preclinical validations.
Collapse
|
8
|
Chen Q, Xu S, Liu S, Wang Y, Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J Control Release 2022; 342:280-294. [PMID: 35016919 DOI: 10.1016/j.jconrel.2022.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Malignant tumor is still a leading threat to human health. Despite the rapid development of targeted therapeutic strategies, any treatment specifically acting on single target would inevitably suffer from tumor resistance, largely due to the genetic instability and variability of tumor cells. Thus, traditional therapies such as broad-spectrum chemotherapy would certainly occupy an important position in clinical cancer therapy. Nevertheless, most chemotherapeutic drugs have long been criticized for unsatisfactory therapeutic efficacy with severe off-target toxicity. Although several chemotherapeutic nanomedicines with improved therapeutic safety have been applied in clinics, the therapeutic outcomes still do not fulfill expectation. To address this challenge, enormous efforts have been devoted to developing novel nano-formulations for efficient delivery of chemotherapeutic drugs. Herein, we aim to outline the latest progression in the emerging nanomedicines of paclitaxel (PTX), with special attention to the functional nanocarriers, self-delivering prodrug-nanoassemblies and combination nanotherapeutics of PTX. Finally, the challenges and opportunities of these functional PTX nanomedicines in clinical translation are spotlighted.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China.
| | - Shu Xu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Shuo Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Yue Wang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| |
Collapse
|