1
|
Saladino GM, Chao PH, Brodin B, Li SD, Hertz HM. Liposome biodistribution mapping with in vivo X-ray fluorescence imaging. NANOSCALE 2024; 16:17404-17411. [PMID: 39212620 DOI: 10.1039/d4nr02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid-based nanoparticles are organic nanostructures constituted of phospholipids and cholesterol, displaying high in vivo biocompatibility. They have been demonstrated as effective nanocarriers for drug delivery and targeting. Mapping liposome distribution is crucial as it enables a precise understanding of delivery kinetics, tissue targeting efficiency, and potential off-target effects. Recently, ruthenium-encapsulated liposomes have shown potential for targeted drug delivery, photodynamic therapy, and optical fluorescence imaging. In the present work, we design Ru(bpy)3-encapsulated liposomes (Ru-Lipo) empowering optical and X-ray fluorescence (XRF) properties for dual mode imaging and demonstrate the passivation role of liposomes over the free Ru(bpy)3 compound. We employ whole-body XRF imaging to map the in vivo biodistribution of Ru-Lipo in mice, enabling tumor detection and longitudinal studies with elemental specificity and resolution down to the sub-millimeter scale. Quantitative XRF computed tomography on extracted organs permits targeting efficiency evaluations. These findings highlight the promising role of XRF imaging in pharmacokinetic studies and theranostic applications for the rapid optimization of drug delivery and assessment of targeting efficiency.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Bertha Brodin
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Hans Martin Hertz
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| |
Collapse
|
2
|
Aye KC, Rojanarata T, Ngawhirunpat T, Opanasopit P, Pornpitchanarong C, Patrojanasophon P. Development and characterization of curcumin nanosuspension-embedded genipin-crosslinked chitosan/polyvinylpyrrolidone hydrogel patch for effective wound healing. Int J Biol Macromol 2024; 274:133519. [PMID: 38960235 DOI: 10.1016/j.ijbiomac.2024.133519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats. The optimized hydrogel consisted of a 70:30 ratio of CS:PVP, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporating 5 % w/w Cur-NSs resulted in a more compact structure, although with a reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery by day 7. Cur-NSs likely aided wound healing by reducing the inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a wound dressing material.
Collapse
Affiliation(s)
- Khin Cho Aye
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
3
|
Slavkova M, Dimitrova D, Voycheva C, Popova T, Spassova I, Kovacheva D, Yordanov Y, Tzankova V, Tzankov B. Composite Hydrogel with Oleic Acid-Grafted Mesoporous Silica Nanoparticles for Enhanced Topical Delivery of Doxorubicin. Gels 2024; 10:356. [PMID: 38920903 PMCID: PMC11203139 DOI: 10.3390/gels10060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are inorganic nanocarriers presenting versatile properties and the possibility to deliver drug molecules via different routes of application. Their modification with lipids could diminish the burst release profile for water-soluble molecules. In the case of oleic acid (OA) as a lipid component, an improvement in skin penetration can be expected. Therefore, in the present study, aminopropyl-functionalized MSNs were modified with oleic acid through carbodiimide chemistry and were subsequently incorporated into a semisolid hydrogel for dermal delivery. Doxorubicin served as a model drug. The FT-IR and XRD analysis as well as the ninhydrin reaction showed the successful preparation of the proposed nanocarrier with a uniform particle size (352-449 nm) and negative zeta potential. Transmission electron microscopy was applied to evaluate any possible changes in morphology. High encapsulation efficiency (97.6 ± 1.8%) was achieved together with a sustained release profile over 48 h. The composite hydrogels containing the OA-modified nanoparticles were characterized by excellent physiochemical properties (pH of 6.9; occlusion factor of 53.9; spreadability of factor 2.87 and viscosity of 1486 Pa·s) for dermal application. The in vitro permeation study showed 2.35 fold improvement compared with the hydrogel containing free drug. In vitro cell studies showed that loading in OA-modified nanoparticles significantly improved doxorubicin's cytotoxic effects toward epidermoid carcinoma cells (A431). All of the results suggest that the prepared composite hydrogel has potential for dermal delivery of doxorubicin in the treatment of skin cancer.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Diana Dimitrova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Christina Voycheva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Teodora Popova
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| | - Borislav Tzankov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria (C.V.); (T.P.); (B.T.)
| |
Collapse
|
4
|
Yaqin Z, Kehan W, Yi Z, Naijian W, Wei Q, Fei M. Resveratrol alleviates inflammatory bowel disease by inhibiting JAK2/STAT3 pathway activity via the reduction of O-GlcNAcylation of STAT3 in intestinal epithelial cells. Toxicol Appl Pharmacol 2024; 484:116882. [PMID: 38437956 DOI: 10.1016/j.taap.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The role of O-linked N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) in the pathogenesis of inflammatory bowel disease (IBD) has been increasingly highlighted in recent studies. It's been reported that signal transducer and activator of transcription 3 (STAT3) O-GlcNAcylation can affect the activity of the Janus kinase2 (JAK2)/STAT3 pathway.Our recent study showed that resveratrol repairsIBDin mice.On this basis,the present study aimed to explore whether the mechanism of IBD repair by resveratrol is associated with STAT3 O-GlcNAcylation. Pretreatment of colitis mice and intestinal epithelial cells with an O-GlcNAcylation promoter (Thiamet G, or Glucosamine) and an O-GlcNAcylation inhibitor (OSMI-1) showed that increased O-GlcNAcylation promoted colitis in mice.The pro-inflammatory cytokines interleukin (IL) -6, IL-1β, and tumor necrosis factor-α (TNF-α) were increased, while the anti-inflammatory cytokine IL-10 was decreased. Moreover, the downstream target proteins of JAK2/STAT3, cyclooxygenase-2 and nitric oxide synthase 2 were up-regulated, Resveratrol treatment mitigated the inflammation by decreasing JAK2/STAT3 activity, as well as STAT3 O-GlcNAcylation. Finally, the correlation between STAT3 glycosylation and phosphorylation in intestinal epithelial cells under the effect of resveratrol was investigated by Immunofluorescence co-localization and immunoprecipitation.The results showed that resveratrol inhibited STAT3 O-GlcNAcylation, thereby inhibiting its phosphorylation, reducing JAK2/STAT3 pathway activity, and alleviating IBD.
Collapse
Affiliation(s)
- Zhang Yaqin
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.; Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai 201102, China
| | - Wu Kehan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhu Yi
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, China
| | - Wang Naijian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Qiu Wei
- Nanjing Jiangning Hospital, Nanjing, Jiangsu 211100, China.
| | - Mao Fei
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China..
| |
Collapse
|
5
|
Slavkova M, Lazov C, Spassova I, Kovacheva D, Tibi IPE, Stefanova D, Tzankova V, Petrov PD, Yoncheva K. Formulation of Budesonide-Loaded Polymeric Nanoparticles into Hydrogels for Local Therapy of Atopic Dermatitis. Gels 2024; 10:79. [PMID: 38275852 PMCID: PMC10815368 DOI: 10.3390/gels10010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Budesonide is a mineral corticoid applied in the local therapy of pediatric atopic dermatitis. Unfortunately, its dermal administration is hindered by the concomitant adverse effects and its physicochemical properties. The characteristic pH change in the atopic lesions can be utilized for the preparation of a pH-sensitive nanocarrier. In this view, the formulation of Eudragit L 100 nanoparticles as a budesonide delivery platform could provide more efficient release to the desired site, improve its penetration, and subsequently lower the undesired effects. In this study, budesonide-loaded Eudragit L100 nanoparticles were prepared via the nanoprecipitation method (mean diameter 57 nm, -31.2 mV, and approx. 90% encapsulation efficiency). Their safety was proven by cytotoxicity assays on the HaCaT keratinocyte cell line. Further, the drug-loaded nanoparticles were incorporated into two types of hydrogels based on methylcellulose or Pluronic F127. The formulated hydrogels were characterized with respect to their pH, occlusion, rheology, penetration, spreadability, and drug release. In conclusion, the developed hydrogels containing budesonide-loaded nanoparticles showed promising potential for the pediatric treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Marta Slavkova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Christophor Lazov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Ivanka Pencheva-El Tibi
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Denitsa Stefanova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 103A, 1113 Sofia, Bulgaria;
| | - Krassimira Yoncheva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria (I.P.-E.T.); (D.S.); (V.T.)
| |
Collapse
|
6
|
Lúcio M, Giannino N, Barreira S, Catita J, Gonçalves H, Ribeiro A, Fernandes E, Carvalho I, Pinho H, Cerqueira F, Biondi M, Lopes CM. Nanostructured Lipid Carriers Enriched Hydrogels for Skin Topical Administration of Quercetin and Omega-3 Fatty Acid. Pharmaceutics 2023; 15:2078. [PMID: 37631292 PMCID: PMC10459668 DOI: 10.3390/pharmaceutics15082078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.
Collapse
Affiliation(s)
- Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
- CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Nicole Giannino
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Sérgio Barreira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - José Catita
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Paralab, SA, 4420-392 Valbom, Portugal;
| | | | - Artur Ribeiro
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Isabel Carvalho
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Hugo Pinho
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - Fátima Cerqueira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marco Biondi
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Carla M. Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Peterle L, Sanfilippo S, Borgia F, Li Pomi F, Vadalà R, Costa R, Cicero N, Gangemi S. The Role of Nutraceuticals and Functional Foods in Skin Cancer: Mechanisms and Therapeutic Potential. Foods 2023; 12:2629. [PMID: 37444367 DOI: 10.3390/foods12132629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Skin cancer is a prevalent type of cancer worldwide and has a high growth rate compared to other diseases. Although modern targeted therapies have improved the management of cutaneous neoplasms, there is an urgent requirement for a safer, more affordable, and effective chemoprevention and treatment strategy for skin cancer. Nutraceuticals, which are natural substances derived from food, have emerged as a potential alternative or adjunctive treatment option. In this review, we explore the current evidence on the use of omega-3 fatty acids and polyphenols (curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein) for the treatment of melanoma and non-melanoma skin cancer (NMSC), as well as in their prevention. We discuss the mechanisms of action of the aforementioned nutraceuticals and their probable therapeutic benefits in skin cancer. Omega-3 fatty acids, curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein have several properties, among which are anti-inflammatory and anti-tumor, which can help to prevent and treat skin cancer. However, their effectiveness is limited due to poor bioavailability. Nanoparticles and other delivery systems can improve their absorption and targeting. More research is needed to evaluate their safety and effectiveness as a natural approach to skin cancer prevention and treatment. These compounds should not replace conventional cancer treatments, but may be used as complementary therapy under the guidance of a healthcare professional.
Collapse
Affiliation(s)
- Lucia Peterle
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Serena Sanfilippo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Francesco Borgia
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Federica Li Pomi
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Rossella Vadalà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rosaria Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| |
Collapse
|
8
|
Kishawy ATY, Ibrahim D, Roushdy EM, Moustafa A, Eldemery F, Hussein EM, Hassan FAM, Elazab ST, Elabbasy MT, Kanwal R, Kamel WM, Atteya MR, Zaglool AW. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors. Front Vet Sci 2023; 10:1137896. [PMID: 37056226 PMCID: PMC10086338 DOI: 10.3389/fvets.2023.1137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Climate change is considered to be the primary cause of heat stress (HS) in broiler chickens. Owing to the unique properties of extracted polyphenols, resveratrol-loaded liposomal nanoparticles (Resv-Lipo NPs) were first explored to mitigate the harmful effects of HS. The dietary role of Resv-Lipo NPs in heat-stressed birds was investigated based on their growth performance, antioxidative potential, and the expression of heat shock proteins, sirtuins, antioxidant, immune, and muscle-building related genes. A total of 250 1-day-old Ross 308 broiler chickens were divided into five experimental groups (5 replicates/group, 10 birds/replicate) for 42 days as follows: the control group was fed a basal diet and reared in thermoneutral conditions, and the other four HS groups were fed a basal diet supplemented with Resv-Lipo NPsI, II, and III at the levels of 0, 50, 100, and 150 mg/kg diet, respectively. The results indicated that supplementation with Resv-Lipo NP improved the growth rate of the HS group. The Resv-Lipo NP group showed the most significant improvement in body weight gain (p < 0.05) and FCR. Additionally, post-HS exposure, the groups that received Resv-Lipo NPs showed restored functions of the kidney and the liver as well as improvements in the lipid profile. The restoration occurred especially at higher levels in the Resv-Lipo NP group compared to the HS group. The elevated corticosterone and T3 and T4 hormone levels in the HS group returned to the normal range in the Resv-Lipo NPsIII group. Additionally, the HS groups supplemented with Resv-Lipo NPs showed an improvement in serum and muscle antioxidant biomarkers. The upregulation of the muscle and intestinal antioxidant-related genes (SOD, CAT, GSH-PX, NR-f2, and HO-1) and the muscle-building genes (myostatin, MyoD, and mTOR) was observed with increasing the level of Resv-Lipo NPs. Heat stress upregulated heat shock proteins (HSP) 70 and 90 gene expression, which was restored to normal levels in HS+Resv-Lipo NPsIII. Moreover, the expression of sirtuin 1, 3, and 7 (SIRT1, SIRT3, and SIRT7) genes was increased (p < 0.05) in the liver of the HS groups that received Resv-Lipo NPs in a dose-dependent manner. Notably, the upregulation of proinflammatory cytokines in the HS group was restored in the HS groups that received Resv-Lipo NPs. Supplementation with Resv-Lipo NPs can mitigate the harmful impact of HS and consequently improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elham M. Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fardos A. M. Hassan
- Department of Animal Wealth Development, Veterinary Economics, and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Tharwat Elabbasy
- Department of Public Health, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Raheela Kanwal
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Walid M. Kamel
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha'il, Saudi Arabia
| | - Mohamed R. Atteya
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic, and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Modulating Inflammation-Mediated Diseases via Natural Phenolic Compounds Loaded in Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15020699. [PMID: 36840021 PMCID: PMC9964760 DOI: 10.3390/pharmaceutics15020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The global increase and prevalence of inflammatory-mediated diseases have been a great menace to human welfare. Several works have demonstrated the anti-inflammatory potentials of natural polyphenolic compounds, including flavonoid derivatives (EGCG, rutin, apigenin, naringenin) and phenolic acids (GA, CA, etc.), among others (resveratrol, curcumin, etc.). In order to improve the stability and bioavailability of these natural polyphenolic compounds, their recent loading applications in both organic (liposomes, micelles, dendrimers, etc.) and inorganic (mesoporous silica, heavy metals, etc.) nanocarrier technologies are being employed. A great number of studies have highlighted that, apart from improving their stability and bioavailability, nanocarrier systems also enhance their target delivery, while reducing drug toxicity and adverse effects. This review article, therefore, covers the recent advances in the drug delivery of anti-inflammatory agents loaded with natural polyphenolics by the application of both organic and inorganic nanocarriers. Even though nanocarrier technology offers a variety of possible anti-inflammatory advantages to naturally occurring polyphenols, the complexes' inherent properties and mechanisms of action have not yet been fully investigated. Thus, expanding the quest on novel natural polyphenolic-loaded delivery systems, together with the optimization of complexes' activity toward inflammation, will be a new direction of future efforts.
Collapse
|
10
|
Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. J Funct Biomater 2023; 14:jfb14020115. [PMID: 36826914 PMCID: PMC9963106 DOI: 10.3390/jfb14020115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Skin wounds have imposed serious socioeconomic burdens on healthcare providers and patients. There are just more than 25,000 burn injury-related deaths reported each year. Conventional treatments do not often allow the re-establishment of the function of affected regions and structures, resulting in dehydration and wound infections. Many nanocarriers, such as lipid-based systems or biobased and biodegradable polymers and their associated platforms, are favorable in wound healing due to their ability to promote cell adhesion and migration, thus improving wound healing and reducing scarring. Hence, many researchers have focused on developing new wound dressings based on such compounds with desirable effects. However, when applied in wound healing, some problems occur, such as the high cost of public health, novel treatments emphasizing reduced healthcare costs, and increasing quality of treatment outcomes. The integrated hybrid systems of lipid-based nanocarriers (LNCs) and polymer-based systems can be promising as the solution for the above problems in the wound healing process. Furthermore, novel drug delivery systems showed more effective release of therapeutic agents, suitable mimicking of the physiological environment, and improvement in the function of the single system. This review highlights recent advances in lipid-based systems and the role of lipid-based carriers and biodegradable polymers in wound healing.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
- Correspondence: (M.R.N.-J.); (M.B.)
| | - Meysam Sedaghat
- Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Alireza Hoseini
- Department of Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Negar Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135733184, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (M.R.N.-J.); (M.B.)
| |
Collapse
|
11
|
Teixeira PV, Adega F, Martins-Lopes P, Machado R, Lopes CM, Lúcio M. pH-Responsive Hybrid Nanoassemblies for Cancer Treatment: Formulation Development, Optimization, and In Vitro Therapeutic Performance. Pharmaceutics 2023; 15:pharmaceutics15020326. [PMID: 36839648 PMCID: PMC9966415 DOI: 10.3390/pharmaceutics15020326] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Current needs for increased drug delivery carrier efficacy and specificity in cancer necessitate the adoption of intelligent materials that respond to environmental stimuli. Therefore, we developed and optimized pH-triggered drug delivery nanoassemblies that exhibit an increased release of doxorubicin (DOX) in acidic conditions typical of cancer tissues and endosomal vesicles (pH 5.5) while exhibiting significantly lower release under normal physiological conditions (pH 7.5), indicating the potential to reduce cytotoxicity in healthy cells. The hybrid (polymeric/lipid) composition of the lyotropic non-lamellar liquid crystalline (LNLCs) nanoassemblies demonstrated high encapsulation efficiency of the drug (>90%) and high drug loading content (>7%) with colloidal stability lasting at least 4 weeks. Confocal microscopy revealed cancer cellular uptake and DOX-loaded LNLCs accumulation near the nucleus of human hepatocellular carcinoma cells, with a large number of cells appearing to be in apoptosis. DOX-loaded LNLCs have also shown higher citotoxicity in cancer cell lines (MDA-MB 231 and HepG2 cell lines after 24 h and in NCI-H1299 cell line after 48 h) when compared to free drug. After 24 h, free DOX was found to have higher cytotoxicity than DOX-loaded LNLCs and empty LNLCs in the normal cell line. Overall, the results demonstrate that DOX-loaded LNLCs have the potential to be explored in cancer therapy.
Collapse
Affiliation(s)
- Patrícia V. Teixeira
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- DNA & RNA Sensing Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Blocos Laboratoriais Ed, 5000-801 Vila Real, Portugal
| | - Filomena Adega
- CAG—Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Paula Martins-Lopes
- DNA & RNA Sensing Lab, Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Blocos Laboratoriais Ed, 5000-801 Vila Real, Portugal
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Raul Machado
- CBMA—Center of Molecular and Environmental Biology, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
- IB-S—Institute of Science and Innovation for Bio-Sustainability, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Correspondence: (C.M.L.); (M.L.)
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Center of Molecular and Environmental Biology, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
- Correspondence: (C.M.L.); (M.L.)
| |
Collapse
|
12
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid Nanoparticles for Drug Delivery. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Letao Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Xing Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Robert J. Falconer
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
14
|
Cinan E, Cesur S, Erginer Haskoylu M, Gunduz O, Toksoy Oner E. Resveratrol-Loaded Levan Nanoparticles Produced by Electrohydrodynamic Atomization Technique. NANOMATERIALS 2021; 11:nano11102582. [PMID: 34685023 PMCID: PMC8540966 DOI: 10.3390/nano11102582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Considering the significant advances in nanostructured systems in various biomedical applications and the escalating need for levan-based nanoparticles as delivery systems, this study aimed to fabricate levan nanoparticles by the electrohydrodynamic atomization (EHDA) technique. The hydrolyzed derivative of levan polysaccharide from Halomonas smyrnensis halophilic bacteria, hydrolyzed Halomonas levan (hHL), was used. Nanoparticles were obtained by optimizing the EHDA parameters and then they were characterized in terms of morphology, molecular interactions, drug release and cell culture studies. The optimized hHL and resveratrol (RS)-loaded hHL nanoparticles were monodisperse and had smooth surfaces. The particle diameter size of hHL nanoparticles was 82.06 ± 15.33 nm. Additionally, release of RS from the fabricated hHL nanoparticles at different pH conditions were found to follow the first-order release model and hHL with higher RS loading showed a more gradual release. In vitro biocompatibility assay with human dermal fibroblast cell lines was performed and cell behavior on coated surfaces was observed. Nanoparticles were found to be safe for healthy cells. Consequently, the fabricated hHL-based nanoparticle system may have potential use in drug delivery systems for wound healing and tissue engineering applications and surfaces could be coated with these electrosprayed particles to improve cellular interaction.
Collapse
Affiliation(s)
- Ezgi Cinan
- Industrial Biotechnology and System Biology (IBSB) Research Group, Department of Bioengineering, Marmara University, Istanbul 34722, Turkey; (E.C.); (M.E.H.)
| | - Sumeyye Cesur
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.C.); (O.G.)
| | - Merve Erginer Haskoylu
- Industrial Biotechnology and System Biology (IBSB) Research Group, Department of Bioengineering, Marmara University, Istanbul 34722, Turkey; (E.C.); (M.E.H.)
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.C.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ebru Toksoy Oner
- Industrial Biotechnology and System Biology (IBSB) Research Group, Department of Bioengineering, Marmara University, Istanbul 34722, Turkey; (E.C.); (M.E.H.)
- Correspondence:
| |
Collapse
|