1
|
Wagle SR, Kovacevic B, Foster T, Ionescu CM, Jones M, Mikov M, Wise A, Mooranian A, Al-Salami H. Probucol-bile acid nanoparticles: a novel approach and promising solution to prevent cellular oxidative stress in sensorineural hearing loss. J Drug Target 2024; 32:737-755. [PMID: 38758361 DOI: 10.1080/1061186x.2024.2349111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The use of antioxidants could thus prove an effective medication to prevent or facilitate recovery from oxidative stress-induced sensorineural hearing loss (SNHL). One promising strategy to prevent SNHL is developing probucol (PB)-based nanoparticles using encapsulation technology and administering them to the inner ear via the established intratympanic route. The preclinical, clinical and epidemiological studies support that PB is a proven antioxidant that could effectively prevent oxidative stress in different study models. Such findings suggest its applicability in preventing oxidative stress within the inner ear and its associated neural cells. However, several hurdles, such as overcoming the blood-labyrinth barrier, ensuring sustained release, minimising systemic side effects and optimising targeted delivery in the intricate inner ear structures, must be overcome to efficiently deliver PB to the inner ear. This review explores the background and pathogenesis of hearing loss, the potential of PB in treating oxidative stress and its cellular mechanisms, and the obstacles linked to inner ear drug delivery for effectively introducing PB to the inner ear.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Wagle SR, Kovacevic B, Ionescu CM, Foster T, Lim P, Brunet A, McLenachan S, Carvalho L, Mikov M, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles with Probucol and Lithocholic Acid: A Novel Therapeutic Approach for Oxidative Stress-Induced Retinopathies. Mol Pharm 2024; 21:3566-3576. [PMID: 38899552 DOI: 10.1021/acs.molpharmaceut.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Oxidative stress is pivotal in retinal disease progression, causing dysfunction in various retinal components. An effective antioxidant, such as probucol (PB), is vital to counteract oxidative stress and emerges as a potential candidate for treating retinal degeneration. However, the challenges associated with delivering lipophilic drugs such as PB to the posterior segment of the eye, specifically targeting photoreceptor cells, necessitate innovative solutions. This study uses formulation-based spray dry encapsulation technology to develop polymer-based PB-lithocholic acid (LCA) nanoparticles and assesses their efficacy in the 661W photoreceptor-like cell line. Incorporating LCA enhances nanoparticles' biological efficacy without compromising PB stability. In vitro studies demonstrate that PB-LCA nanoparticles prevent reactive oxygen species (ROS)-induced oxidative stress by improving cellular viability through the nuclear erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. These findings propose PB-LCA nanoparticles as a promising therapeutic strategy for oxidative stress-induced retinopathies.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad 21101, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- Medical School, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
3
|
Wagle SR, Kovacevic B, Ionescu CM, Foster T, Jones M, Mikov M, Wise A, Mooranian A, Al-Salami H. Probucol-bile acid based nanoparticles protect auditory cells from oxidative stress: an in vitro study. Ther Deliv 2024; 15:237-252. [PMID: 38469721 DOI: 10.4155/tde-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Aim: Excessive free radicals contribute to oxidative stress and mitochondrial dysfunction in sensorineural hearing loss (SNHL). The antioxidant probucol holds promise, but its limited bioavailability and inner ear barriers hinder effective SNHL treatment. Methodology: We addressed this by developing probucol-loaded nanoparticles with polymers and lithocholic acid and tested them on House Ear Institute-Organ of Corti cells. Results: Probucol-based nanoparticles effectively reduced oxidative stress-induced apoptosis, enhanced cellular viability, improved probucol uptake and promoted mitochondrial function. Additionally, they demonstrated the capacity to reduce reactive oxygen species through the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Conclusion: This innovative nanoparticle system holds the potential to prevent oxidative stress-related hearing impairment, providing an effective solution for SNHL.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad (Hajduk Veljkova 3, 21101), Serbia
| | | | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Kovacevic B, Ionescu CM, Jones M, Wagle SR, Foster T, Lewkowicz M, Wong EY, Ðanić M, Mikov M, Mooranian A, Al-Salami H. Novel polysaccharides-bile acid-cyclodextrin gel systems and effects on cellular viability and bioenergetic parameters. Ther Deliv 2024; 15:119-134. [PMID: 38180012 DOI: 10.4155/tde-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Aim: The novel hydrogel systems made from sodium alginate, pectin, beta-cyclodextrin and deoxycholic acid (DCA) were proposed as potential drug-delivery matrices. Materials & methods: To ensure biocompatibility, rheological parameters were examined and hydrogels' effects on bioenergetic parameters and cellular viability on murine hepatic, and muscle and pancreatic beta cells. Results & conclusion: All hydrogels show non-Newtonian, shear thinning behavior. Cells displayed various oxygen-dependent viability patterns, with the bile acid overall adversely affecting their biological activities. All cells performed best under normoxia, with pancreatic beta cells displaying the most profound oxygen-dependent viability behavior. The cells tolerated the addition of a moderate concentration of beta-cyclodextrin to the polymer matrix.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Michael Lewkowicz
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Elaine Ym Wong
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Maja Ðanić
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
5
|
Sharif A, Mamo J, Lam V, Al-Salami H, Mooranian A, Watts GF, Clarnette R, Luna G, Takechi R. The therapeutic potential of probucol and probucol analogues in neurodegenerative diseases. Transl Neurodegener 2024; 13:6. [PMID: 38247000 PMCID: PMC10802046 DOI: 10.1186/s40035-024-00398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative disorders present complex pathologies characterized by various interconnected factors, including the aggregation of misfolded proteins, oxidative stress, neuroinflammation and compromised blood-brain barrier (BBB) integrity. Addressing such multifaceted pathways necessitates the development of multi-target therapeutic strategies. Emerging research indicates that probucol, a historic lipid-lowering medication, offers substantial potential in the realm of neurodegenerative disease prevention and treatment. Preclinical investigations have unveiled multifaceted cellular effects of probucol, showcasing its remarkable antioxidative and anti-inflammatory properties, its ability to fortify the BBB and its direct influence on neural preservation and adaptability. These diverse effects collectively translate into enhancements in both motor and cognitive functions. This review provides a comprehensive overview of recent findings highlighting the efficacy of probucol and probucol-related compounds in the context of various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Arazu Sharif
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Research, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Roger Clarnette
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Giuseppe Luna
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
6
|
Wagle SR, Ionescu CM, Kovacevic B, Jones M, Foster T, Lim P, Lewkowicz M, Ðanić M, Mikov M, Mooranian A, Al-Salami H. Pharmaceutical characterization of probucol bile acid-lithocholic acid nanoparticles to prevent chronic hearing related and similar cellular oxidative stress pathologies. Nanomedicine (Lond) 2023; 18:923-940. [PMID: 37529927 DOI: 10.2217/nnm-2023-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background: Sensorineural hearing loss has been associated with oxidative stress. However, an antioxidant that passes effectively through the ear remains elusive. Method: Probucol (PB)-based nanoparticles were formed using a spray-drying encapsulation technique, characterized and tested in vitro. Results: Uniform, spherical nanoparticles were produced. The addition of lithocholic acid to PB formulations did not affect drug content or production yield, but it did modify capsule size, surface tension, electrokinetic stability and drug release. Cell viability, bioenergetics and inflammatory profiles were improved when auditory cells were exposed to PB-based nanoparticles, which showed antioxidant properties (p < 0.05). Conclusion: PB-based nanoparticles can potentially protect the auditory cell line from oxidative stress and could be used in future in vivo studies as a potential new therapeutic agent for sensorineural hearing loss.
Collapse
Affiliation(s)
- Susbin R Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina M Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Michael Lewkowicz
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Maja Ðanić
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad (Hajduk Veljkova 3, 21101), Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad (Hajduk Veljkova 3, 21101), Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6907, Western Australia, Australia
| |
Collapse
|
7
|
Kovacevic B, Ionescu CM, Wagle SR, Jones M, Lewkowicz M, Wong EYM, Đanić M, Mikov M, Mooranian A, Al-Salami H. Impact of Novel Teflon-DCA Nanogel Matrix on Cellular Bioactivity. J Pharm Sci 2023; 112:700-707. [PMID: 36150468 DOI: 10.1016/j.xphs.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022]
Abstract
The biocompatibility and effects on cells' bioactivity of developed pharmaceuticals are crucial properties, required to permit their safe delivery. Nanogel matrices offer a promising role in emerging pharmaceutics; however, it is crucial that they and their excipients do not demonstrate detrimental effects on the cells to which they interact. This study investigated the use of Teflon and the secondary bile acid deoxycholic acid in the formation of novel nanogel matrices. Each has properties which may be of benefit for the nanogels created and their use in the pharmaceutical industry. Rheological parameters and scanning electron microscopy studies were conducted. In order to assess the developed nanogels' impacts on cellular bioactivity, studies using Seahorse assays were conducted on three cell types, hepatic, muscle and pancreatic beta cells. Results demonstrated the addition of Teflon did not alter the morphological characteristics of resulting nanogels or the metabolic profiles of the cell lines. Interestingly, pancreatic beta cells highlighted the potential of Teflon to exert a protective profile from mitochondrial damage. Overall, the developed nanogels showed potentially promising profiles in certain studies conducted which may lead to future research.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Michael Lewkowicz
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia.
| |
Collapse
|
8
|
Novel hydrogel comprising non-ionic copolymer with various concentrations of pharmacologically active bile acids for cellular injectable gel. Colloids Surf B Biointerfaces 2023; 222:113014. [PMID: 36427407 DOI: 10.1016/j.colsurfb.2022.113014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Deoxycholic acid (DCA) is a bile acid capable of forming micelles and modifying the properties of hydrogels. We incorporated DCA in sodium alginate (SA) and poloxamer 407 matrices creating novel DCA-copolymer hydrogel for therapeutic delivery. Hydrogels were assessed for common rheological properties. Biocompatibility and biological effect were examined on various cell lines. Cell viability was determent in normal and various hypoxic conditions, and full mitochondrial bioenergetic parameters were assessed in cell lines in order to illustrate hydrogel effects on survival, and cell metabolic profile within the hydrogels. Obtained data suggest that a low dose of DCA in permeable, biocompatible hydrogels can be beneficial for cells to combat hypoxic conditions.
Collapse
|
9
|
Kovacevic B, Ionescu CM, Jones M, Wagle SR, Lewkowicz M, Đanić M, Mikov M, Mooranian A, Al-Salami H. The Effect of Deoxycholic Acid on Chitosan-Enabled Matrices for Tissue Scaffolding and Injectable Nanogels. Gels 2022; 8:gels8060358. [PMID: 35735702 PMCID: PMC9222767 DOI: 10.3390/gels8060358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of a multitude of diseases is influenced by bioenergetic dysfunction. Healthy mitochondria are presented as essential for the regulation and function of multiple cell types, including the cells of relevance for this research: pancreatic beta cells, muscle cells, and liver cells. Hence, effects of hydrogels (particularly nanogels) on bioenergetics needs to be taken into account when designing optimum delivery matrices. Several polymers have been suggested for use in hydrogels and nanogels, with focus on chitosan due to its range of beneficial properties. Bile acids have emerged as beneficial excipients, including deoxycholic acid, which can increase membrane permeability of cells. Nanogels were manufactured containing various concentrations of chitosan and deoxycholic acid in addition to the staple sodium alginate. Nanogels then underwent an array of analysis including rheological studies and in vitro cell work assessing viability, hypoxia, and the bioenergetic profiles. Overall, deoxycholic acid showed enhanced gel strength although this resulted in slightly lower cell viability and impacted bioenergetic profiles. Results from this study showed the benefits of deoxycholic acid; however, this was found to be less suitable for cell delivery matrices and is perhaps more beneficial for drug-delivery systems.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Michael Lewkowicz
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.Đ.); (M.M.)
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.Đ.); (M.M.)
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
- Correspondence: (A.M.); (H.A.-S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
- Correspondence: (A.M.); (H.A.-S.)
| |
Collapse
|
10
|
Pharmacological Dose-Effect Profiles of Various Concentrations of Humanised Primary Bile Acid in Encapsulated Cells. NANOMATERIALS 2022; 12:nano12040647. [PMID: 35214975 PMCID: PMC8879575 DOI: 10.3390/nano12040647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/08/2023]
Abstract
Bile acids (BA)s are known surfactants and well-documented to play a major role in food digestion and absorption. Recently, potential endocrinological and formulation-stabilisation effects of BAs have been explored and their pharmacological effects on supporting cell survival and functions have gained wide interest. Hence, this study aimed to explore the hyper-glycaemic dependent dose-effect of the BA chenodeoxycholic acid (CDCA) when encapsulated with pancreatic β-cells, allowing assessment of CDCA's impacts when encapsulated. Four different concentrations of the BA were prepared, and viable cells were encapsulated and incubated for 2 days. Multiple analyses were carried out including confocal imaging, glucose-induced cellular mitochondrial viability indices, insulin production, inflammatory biomarker analyses and cellular bioenergetics measurements. There was a significant dose-effect with different concentrations of the BA, affecting cellular viability and antioxidant activities, cell functions and insulin release, inflammatory biomarkers, and cellular-bioenergetics at different oxidative stress levels. The results demonstrate that, when encapsulated, the BA CDCA exerts positive pharmacological effects at the cellular level, and such effects are concentration dependent.
Collapse
|
11
|
Taurine Grafted Micro-Implants Improved Functions without Direct Dependency between Interleukin-6 and the Bile Acid Lithocholic Acid in Plasma. Biomedicines 2022; 10:biomedicines10010111. [PMID: 35052790 PMCID: PMC8772949 DOI: 10.3390/biomedicines10010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA). Graft pharmaceutical features pre-transplantation, and biological effects including on LCA concentrations post-transplantation, were measured. TCA-microcapsules had an oval shape and similar size compared with the control. The treatment group survived longer, showed improved glucose and interleukin-6 concentrations, and lower LCA concentrations in plasma, large intestine, faeces, liver and spleen, compared with control. Results suggest that TCA incorporation with islets encapsulated graft exerted beneficial effects, but there was no direct and significant dependency between concentrations of interleukin-6 and LCA.
Collapse
|
12
|
Mooranian A, Jones M, Walker D, Ionescu C, Wagle S, Kovačević B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. 'In vitro' assessments of microencapsulated viable cells as a result of primary bile acid-encapsulated formulation for inflammatory disorders. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background / Aim: Metformin is widely used in type 2 diabetes and exhibits many positive biological effects on pancreatic b-cells and muscle cells, such as supporting insulin release by b-cells and glucose uptake by muscle cells and reducing oxidative stress, particularly due to diabetes-associated hyperglycaemia. Interestingly, for type 1 diabetes, transplantation of healthy b-cells has been proposed as a novel way to replace insulin therapy. Recently, bile acid-formulations containing transplantable b-cells showed best stability. Hence, this study aimed to explore the effects of metformin-bile acid formulations in b-cell encapsulation and on the biological activities of b-cells and muscle-cells. Methods: Two sets of biological effects were examined, using metformin-bile acid formulations, on encapsulated b-cells and on muscle cells exposed to the formulations. Results: Various encapsulated b-cell formulations' cell viability, insulin levels, cellular oxidative stress, cellular inflammatory profile and bioenergetics at the normoand hyperglycaemic states showed differing results based upon the metformin concentration and the inclusion or absence of bile acid. Similar effects were observed with muscle cells. Low ratios of metformin and bile acids showed best biological effects, suggesting a formulation dependent result. The formulations' positive effects were more profound at the hyperglycaemic state suggesting efficient cell protective effects. Conclusion: Overall, metformin had positive impacts on the cells in a concentration-dependent manner, with the addition of chenodeoxycholic acid further improving results.
Collapse
|
13
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Mikov M, Al-Salami H. Artificial Cell Encapsulation for Biomaterials and Tissue Bio-Nanoengineering: History, Achievements, Limitations, and Future Work for Potential Clinical Applications and Transplantation. J Funct Biomater 2021; 12:68. [PMID: 34940547 PMCID: PMC8704355 DOI: 10.3390/jfb12040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | - Daniel Brown
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
14
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
15
|
Mooranian A, Foster T, Ionescu CM, Carey L, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Johnstone E, Kuthubutheen J, Brown D, Atlas MD, Mikov M, Al-Salami H. The Effects of Primary Unconjugated Bile Acids on Nanoencapsulated Pharmaceutical Formulation of Hydrophilic Drugs: Pharmacological Implications. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4423-4434. [PMID: 34720580 PMCID: PMC8550211 DOI: 10.2147/dddt.s328526] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023]
Abstract
Introduction In a recent study, in our laboratory, primary unconjugated bile acids, commonly found in humans, chenodeoxycholic acid (CDCA), have been shown to improve stability of nanoencapsulated lipophilic drugs and improve their release profile after oral administration likely via electrokinetic stabilisation. Hence, this study aimed to examine the effects of CDCA on exerting similar effects on hydrophilic drugs. Methods Various CDCA-based formulations were produced for the orally administered hydrophilic drug, metformin. Analyses of these formulations included electrokinetic potentials, topography, drug and CDCA formulation contents, nano size distribution, heat-induced deformation and outer-core expansion indices, release profiles, shell-resistance ratio, and thermal and chemical indices. With the drug’s main target being pancreatic beta-cells, the formulations’ effects on cell viability, functions and inflammatory profiles were also investigated. Results and Conclusions CDCA-based metformin formulations exhibited improved stability and release profiles via thermal, chemical and electrokinetic effects, which were formulation-dependent suggesting potential applications of CDCA in the oral targeted delivery of hydrophilic drugs.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Louise Carey
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Edan Johnstone
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | | | - Daniel Brown
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Marcus D Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| |
Collapse
|