1
|
Fornari C, Arrieta A, Bradley JS, Tout M, Magalhaes P, Auriol FK, Borella E, Piana C, Della Pasqua O, Vallespir BP, Mazzei P, Bokesch PM, Hoover R, Capriati A, Habboubi N. Dose rationale for the use of meropenem/vaborbactam combination in paediatric patients with Gram-negative bacterial infections. Br J Clin Pharmacol 2024; 90:2597-2610. [PMID: 38925918 DOI: 10.1111/bcp.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Meropenem/vaborbactam combination is approved in adults by FDA and EMA for complicated urinary tract infections and by EMA also for other Gram-negative infections. We aimed to characterise the pharmacokinetics of both moieties in an ongoing study in children and use a model-based approach to inform adequate dosing regimens in paediatric patients. METHODS Over 4196 blood samples of meropenem and vaborbactam (n = 414 subjects) in adults, together with 114 blood samples (n = 39) in paediatric patients aged 3 months to 18 years were available for this analysis. Data were analysed using a population with prior information from a pharmacokinetic model in adults to inform parameter estimation in children. Simulations were performed to assess the suitability of different dosing regimens to achieve adequate probability of target attainment (PTA). RESULTS Meropenem/vaborbactam PK was described with two-compartment models with first-order elimination. Body weight and CLcr were significant covariates on the disposition of both drugs. A maturation function was evaluated to explore changes in clearance in neonates. PTA ≥90% was derived for children aged ≥3 months after 3.5-h IV infusion of 40 mg/kg Q8h of both meropenem and vaborbactam and 2 g/2 g for those ≥50 kg. Extrapolation of disposition parameters suggest that adequate PTA is achieved after a 3.5-h IV infusion of 20 mg/kg for neonates and infants (3 months). CONCLUSIONS An integrated analysis of adult and paediatric data allowed accurate description of sparsely sampled meropenem/vaborbactam PK in paediatric patients and provided recommendations for the dosing in neonates and infants (3 months).
Collapse
Affiliation(s)
- Chiara Fornari
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Antonio Arrieta
- Children's Hospital of Orange County, Orange, California, USA
| | - John S Bradley
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Rady Children's Hospital, San Diego, California, USA
| | - Mira Tout
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Paulo Magalhaes
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Faten Koraichi Auriol
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Elisa Borella
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Chiara Piana
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics, University College London, London, UK
| | - Bartomeu Piza Vallespir
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Paolo Mazzei
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | | | | | - Angela Capriati
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| | - Nassir Habboubi
- Clinical Pharmacology, Pharmacometrics and Clinical DMPK Department, Stemline Therapeutics/Menarini Group, Pomezia, Italy
| |
Collapse
|
2
|
Wu YE, Zheng YY, Li QY, Yao BF, Cao J, Liu HX, Hao GX, van den Anker J, Zheng Y, Zhao W. Model-informed drug development in pediatric, pregnancy and geriatric drug development: States of the art and future. Adv Drug Deliv Rev 2024; 211:115364. [PMID: 38936664 DOI: 10.1016/j.addr.2024.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The challenges of drug development in pediatric, pregnant and geriatric populations are a worldwide concern shared by regulatory authorities, pharmaceutical companies, and healthcare professionals. Model-informed drug development (MIDD) can integrate and quantify real-world data of physiology, pharmacology, and disease processes by using modeling and simulation techniques to facilitate decision-making in drug development. In this article, we reviewed current MIDD policy updates, reflected on the integrity of physiological data used for MIDD and the effects of physiological changes on the drug PK, as well as summarized current MIDD strategies and applications, so as to present the state of the art of MIDD in pediatric, pregnant and geriatric populations. Some considerations are put forth for the future improvements of MIDD including refining regulatory considerations, improving the integrity of physiological data, applying the emerging technologies, and exploring the application of MIDD in new therapies like gene therapies for special populations.
Collapse
Affiliation(s)
- Yue-E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan-Yuan Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiu-Yue Li
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Cao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui-Xin Liu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Medical Center, Washington, DC, USA; Departments of Pediatrics, Pharmacology & Physiology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
D'Agate S, Ruiz Gabarre D, Della Pasqua O. Population pharmacokinetics and dose rationale for aciclovir in term and pre-term neonates with herpes. Pharmacol Res Perspect 2024; 12:e1193. [PMID: 38775304 PMCID: PMC11110484 DOI: 10.1002/prp2.1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 05/25/2024] Open
Abstract
Aciclovir is considered the first-line treatment against Herpes simplex virus (HSV) infections in new-borns and infants. As renal excretion is the major route of elimination, in renally-impaired patients, aciclovir doses are adjusted according to the degree of impairment. However, limited attention has been given to the implications of immature renal function or dysfunction due to the viral disease itself. The aim of this investigation was to characterize the pharmacokinetics of aciclovir taking into account maturation and disease processes in the neonatal population. Pharmacokinetic data obtained from 2 previously published clinical trials (n = 28) were analyzed using a nonlinear mixed effects modeling approach. Post-menstrual age (PMA) and creatinine clearance (CLCR) were assessed as descriptors of maturation and renal function. Simulation scenarios were also implemented to illustrate the use of pharmacokinetic data to extrapolate efficacy from adults. Aciclovir pharmacokinetics was described by a one-compartment model with first-order elimination. Body weight and diagnosis (systemic infection) were statistically significant covariates on the volume of distribution, whereas body weight, CLCR and PMA had a significant effect on clearance. Median clearance varied from 0.2 to 1.0 L/h in subjects with PMA <34 or ≥34 weeks, respectively. Population estimate for volume of distribution was 1.93 L with systemic infection increasing this value by almost 3-fold (2.67 times higher). A suitable model parameterization was identified, which discriminates the effects of developmental growth, maturation, and organ function. Exposure to aciclovir was found to increase with decreasing PMA and renal function (CLCR), suggesting different dosing requirement for pre-term neonates.
Collapse
Affiliation(s)
- S. D'Agate
- Clinical Pharmacology & Therapeutics GroupUniversity College LondonLondonUK
| | - D. Ruiz Gabarre
- Clinical Pharmacology & Therapeutics GroupUniversity College LondonLondonUK
- Present address:
Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - O. Della Pasqua
- Clinical Pharmacology & Therapeutics GroupUniversity College LondonLondonUK
| |
Collapse
|
4
|
Berckmans Y, Hoffert Y, Vankerckhoven A, Dreesen E, Coosemans A. Drug Repurposing for Targeting Myeloid-Derived Suppressor-Cell-Generated Immunosuppression in Ovarian Cancer: A Literature Review of Potential Candidates. Pharmaceutics 2023; 15:1792. [PMID: 37513979 PMCID: PMC10385967 DOI: 10.3390/pharmaceutics15071792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The lethality of patients with ovarian cancer (OC) remains high. Current treatment strategies often do not lead to the desired outcome due to the development of therapy resistance, resulting in high relapse rates. Additionally, clinical trials testing immunotherapy against OC have failed to reach significant results to date. The OC tumor microenvironment and specifically myeloid-derived suppressor cells (MDSC) are known to generate immunosuppression and inhibit the anti-tumor immune response following immunotherapy treatment. Our review aims to characterize potential candidate treatments to target MDSC in OC through drug-repurposing. A literature search identified repurposable compounds with evidence of their suppressing the effect of MDSC. A total of seventeen compounds were withheld, of which four were considered the most promising. Lurbinectedin, metformin, celecoxib, and 5-azacytidine have reported preclinical effects on MDSC and clinical evidence in OC. They have all been approved for a different indication, characterizing them as the most promising candidates for repurposing to treat patients with OC.
Collapse
Affiliation(s)
- Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Yannick Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Usman M, Khadka S, Saleem M, Rasheed H, Kunwar B, Ali M. Pharmacometrics: A New Era of Pharmacotherapy and Drug Development in Low- and Middle-Income Countries. Adv Pharmacol Pharm Sci 2023; 2023:3081422. [PMID: 36925562 PMCID: PMC10014156 DOI: 10.1155/2023/3081422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023] Open
Abstract
Pharmacotherapy, in many cases, is practiced at a suboptimal level of performance in low- and middle-income countries (LMICs) although stupendous amounts of data are available regularly. The process of drug development is time-consuming, costly, and is also associated with loads of hurdles related to the safety concerns of the compounds. This review was conducted with the objective to emphasize the role of pharmacometrics in pharmacotherapy and the drug development process in LMICs for rational drug therapy. Pharmacometrics is widely applied for the rational clinical pharmacokinetic (PK) practice through the population pharmacokinetic (popPK) modeling and physiologically based pharmacokinetic (PBPK) modeling approach. The scope of pharmacometrics practice is getting wider day by day with the untiring efforts of pharmacometricians. The basis for pharmacometrics analysis is the computer-based modeling and simulation of pharmacokinetics/pharmacodynamics (PK/PD) data supplemented by characterization of important aspects of drug safety and efficacy. Pharmacometrics can be considered an invaluable tool not only for new drug development with maximum safety and efficacy but also for dose optimization in clinical settings. Due to the convenience of using sparse and routine patient data, a significant advantage exists in this regard for LMICs which would otherwise lag behind in clinical trials.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sitaram Khadka
- Shree Birendra Hospital, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Huma Rasheed
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bimal Kunwar
- Nobel College, Pokhara University, Kathmandu, Nepal
| | - Moshin Ali
- Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Prediction of lung exposure to anti-tubercular drugs using plasma pharmacokinetic data: implications for dose selection. Eur J Pharm Sci 2022; 173:106163. [DOI: 10.1016/j.ejps.2022.106163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/28/2021] [Accepted: 03/02/2022] [Indexed: 01/08/2023]
|