1
|
Protopapa C, Siamidi A, Junqueira LA, Kolipaka S, Tabriz AG, Douroumis D, Vlachou M. Sustained release of 3D printed bupropion hydrochloride tablets bearing Braille imprints for the visually impaired. Int J Pharm 2024; 663:124594. [PMID: 39154920 DOI: 10.1016/j.ijpharm.2024.124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
3D printing has been introduced as a novel approach for the design of personalized dosage forms and support patient groups with special needs that require additional assistance for enhanced medication adherence. In this study liquid crystal display (LCD) is introduced for the development of sustained release bupropion.HCl printed tablets. The optimization of printing hydrogel inks was combined with the display of Braille patterns on the tablet surface for blind or visually impaired patients. Due to the high printing accuracy, the Braille patterns could be verified by blind patients and provide the required information. Further characterization revealed the presence of BUP in amorphous state within the photopolymerized resins. The selection of poly(ethylene glycol) (PEG)-diacrylate (PEGDA) of different molecular weights and the presence of surfactants or solubilizers disrupted the resin photopolymerization, thus controlling the BUP dissolution rates. A small batch scale-up study demonstrated the capacity of LCD to print rapidly a notable number of tablets within 24 min.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece
| | - Angeliki Siamidi
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece
| | | | - Siva Kolipaka
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham Maritime, Chatham ME4 4TB, UK
| | | | - Dennis Douroumis
- Centre for Research Innovation, University of Greenwich, Medway Campus, Chatham Maritime, Chatham ME4 4TB, UK; Delta Pharmaceutics Ltd., 1- 3 Manor Road, Chatham, ME4 6AE Kent, UK.
| | - Marilena Vlachou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece.
| |
Collapse
|
2
|
Tegegne AM, Ayenew KD, Selam MN. Review on Recent Advance of 3DP-Based Pediatric Drug Formulations. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4875984. [PMID: 39364267 PMCID: PMC11449557 DOI: 10.1155/2024/4875984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/14/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Three-dimensional printing (3DP) has emerged as a game-changing technology in the pharmaceutical industry, providing novel formulation development in the pharmaceutical sector as a whole, which improved patients' individualized therapy. The pediatric population is among the key targets for individualized therapy. Children are a diverse group that includes neonates, infants, and toddlers, each with unique physiological characteristics. Treatment adherence has a significant impact on safe and effective pharmacotherapy in the pediatric population. Improvement of therapeutic dosage forms that provide for the special demands of the pediatric population is a significant challenge for the pharmaceutical industry. Scientists have actively explored 3DP, a quick prototype manufacturing method that has emerged in recent years from many occupations due to its benefits of modest operation, excellent reproducibility, and vast adaptability. This review illuminates the most widely used 3DP technology and its application in the development of pediatric-friendly drug formulations. This 3DP technology allows optimization of pediatric dosage regimens and cases that require individualized treatment, such as geriatrics, renal impairment, liver impairment, critically ill, pregnancy populations, and drugs with nonlinear pharmacokinetics. The fast evolution of 3DP expertise, in addition to the introduction of pharmaceutical inks, has enormous promise for patient dosage form customization.
Collapse
Affiliation(s)
- Aychew Mekuriaw Tegegne
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Kassahun Dires Ayenew
- Department of PharmacyMedicine and Health Science CollegeDebre Berhan University, Debre Berhan, Ethiopia
| | - Muluken Nigatu Selam
- Department of Pharmaceutics and Social PharmacySchool of PharmacyCollege of Health SciencesAddis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Mohammed AA, Alqahtani AA, Ahmed MM. Design and fabrication of 3D-printed gastric floating tablets of captopril: effect of geometry and thermal crosslinking of polymer on floating behavior and drug release. Pharm Dev Technol 2024; 29:517-529. [PMID: 38721970 DOI: 10.1080/10837450.2024.2352491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The present study aims to investigate the potential of the 3D printing technique to design gastroretentive floating tablets (GFTs) for modifying the drug release profile of an immediate-release tablet. A 3D-printed floating shell enclosing a captopril tablet was designed having varying number of drug-release windows. The impact of geometrical changes in the design of delivery system and thermal cross-linking of polymers were evaluated to observe the influence on floating ability and drug release. Water uptake, water insolubilization, Differential Scanning Calorimetry (DSC), and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) were performed to assess the degree of thermal cross-linking of polyvinyl alcohol (PVA) filament. The 3D-printed GFT9 was considered the optimized gastric floating tablet that exhibited >12 h of total floating time with zero floating lag time and successfully accomplished modified-drug release by exhibiting >80% of drug release in 8 h. The zero-order release model, with an r2 value of 0.9923, best fitted the drug release kinetic data of the GFT9, which followed a super case II drug transport mechanism with an n value of 0.95. The optimized gastric floating device (GFT9) also exhibited the highest MDT values (238.55), representing slow drug release from the system due to thermal crosslinking and the presence of a single drug-releasing window in the device.
Collapse
Affiliation(s)
- Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Abdulsalam A Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
4
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
5
|
Rodríguez-Pombo L, de Castro-López MJ, Sánchez-Pintos P, Giraldez-Montero JM, Januskaite P, Duran-Piñeiro G, Dolores Bóveda M, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. Paediatric clinical study of 3D printed personalised medicines for rare metabolic disorders. Int J Pharm 2024; 657:124140. [PMID: 38643809 DOI: 10.1016/j.ijpharm.2024.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Rare diseases are infrequent, but together they affect up to 6-10 % of the world's population, mainly children. Patients require precise doses and strict adherence to avoid metabolic or cardiac failure in some cases, which cannot be addressed in a reliable way using pharmaceutical compounding. 3D printing (3DP) is a disruptive technology that allows the real-time personalization of the dose and the modulation of the dosage form to adapt the medicine to the therapeutic needs of each patient. 3D printed chewable medicines containing amino acids (citrulline, isoleucine, valine, and isoleucine and valine combinations) were prepared in a hospital setting, and the efficacy and acceptability were evaluated in comparison to conventional compounded medicines in six children. The inclusion of new flavours (lemon, vanilla and peach) to obtain more information on patient preferences and the implementation of a mobile app to obtain patient feedback in real-time was also used. The 3D printed medicines controlled amino acid levels within target levels as well as the conventional medicines. The deviation of citrulline levels was narrower and closer within the target concentration with the chewable formulations. According to participants' responses, the chewable formulations were well accepted and can improve adherence and quality of life. For the first time, 3DP enabled two actives to be combined in the same formulation, reducing the number of administrations. This study demonstrated the benefits of preparing 3D printed personalized treatments for children diagnosed with rare metabolic disorders using a novel technology in real clinical practice.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María José de Castro-López
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Paula Sánchez-Pintos
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Jose Maria Giraldez-Montero
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Goretti Duran-Piñeiro
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - M Dolores Bóveda
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain.
| | - Maria L Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain.
| |
Collapse
|
6
|
Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics 2024; 16:441. [PMID: 38675103 PMCID: PMC11054634 DOI: 10.3390/pharmaceutics16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional printing (3DP) technology in pharmaceutical areas is leading to a significant change in controlled drug delivery and pharmaceutical product development. Pharmaceutical industries and academics are becoming increasingly interested in this innovative technology due to its inherent inexpensiveness and rapid prototyping. The 3DP process could be established in the pharmaceutical industry to replace conventional large-scale manufacturing processes, particularly useful for personalizing pediatric drugs. For instance, shape, size, dosage, drug release and multi-drug combinations can be tailored according to the patient's needs. Pediatric drug development has a significant global impact due to the growing needs for accessible age-appropriate pediatric medicines and for acceptable drug products to ensure adherence to the prescribed treatment. Three-dimensional printing offers several significant advantages for clinical pharmaceutical drug development, such as the ability to personalize medicines, speed up drug manufacturing timelines and provide on-demand drugs in hospitals and pharmacies. The aim of this article is to highlight the benefits of extrusion-based 3D printing technology. The future potential of 3DP in pharmaceuticals has been widely shown in the last few years. This article summarizes the discoveries about pediatric pharmaceutical formulations which have been developed with extrusion-based technologies.
Collapse
Affiliation(s)
- Veronica Ianno
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
- Delpharm Reims, 51100 Reims, France; (S.V.); (S.P.)
| | | | | | - Philippe Espeau
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
| |
Collapse
|
7
|
Shuklinova O, Wyszogrodzka-Gaweł G, Baran E, Lisowski B, Wiśniowska B, Dorożyński P, Kulinowski P, Polak S. Can 3D Printed Tablets Be Bioequivalent and How to Test It: A PBPK Model Based Virtual Bioequivalence Study for Ropinirole Modified Release Tablets. Pharmaceutics 2024; 16:259. [PMID: 38399313 PMCID: PMC10893163 DOI: 10.3390/pharmaceutics16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
As the field of personalized dosing develops, the pharmaceutical manufacturing industry needs to offer flexibility in terms of tailoring the drug release and strength to the individual patient's needs. One of the promising tools which have such capacity is 3D printing technology. However, manufacturing small batches of drugs for each patient might lead to huge test burden, including the need to conduct bioequivalence trials of formulations to support the change of equipment or strength. In this paper we demonstrate how to use 3D printing in conjunction with virtual bioequivalence trials based on physiologically based pharmacokinetic (PBPK) modeling. For this purpose, we developed 3D printed ropinirole formulations and tested their bioequivalence with the reference product Polpix. The Simcyp simulator and previously developed ropinirole PBPK model were used for the clinical trial simulations. The Weibull-fitted dissolution profiles of test and reference formulations were used as inputs for the model. The virtual bioequivalence trials were run using parallel design. The study power of 80% was reached using 125 individuals. The study demonstrated how to use PBPK modeling in conjunction with 3D printing to test the virtual bioequivalence of newly developed formulations. This virtual experiment demonstrated the bioequivalence of one of the newly developed formulations with a reference product available on a market.
Collapse
Affiliation(s)
- Olha Shuklinova
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Gabriela Wyszogrodzka-Gaweł
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Ewelina Baran
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Bartosz Lisowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Przemysław Dorożyński
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Sebastian Polak
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| |
Collapse
|
8
|
Hari BNV, Makowski T, Sowiński P, Domańska A, Gonciarz W, Brzeziński M. 3D printing of dolutegravir-loaded polylactide filaments as a long-acting implantable system for HIV treatment. Int J Biol Macromol 2024; 258:128754. [PMID: 38092121 DOI: 10.1016/j.ijbiomac.2023.128754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
3D printing was used to prepare implantable systems or tablets loaded with dolutegravir to explore their potential as long-acting implantables (LAIs). Our strategy relies on preparing a polylactide (PLA) filament loaded with the anti-HIV drug. Subsequently, 3D printing was performed under conditions that allowed the PLA to be simultaneously melted and the drug encapsulated within the printed strand. The dolutegravir release profiles indicated its sustained release for 47 days. Furthermore, neat and drug-loaded tablets were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), while their morphology was assessed by scanning electron microscopy (SEM). Finally, their biocompatibility was proved by MTT assay against ISO standards recommended L929 mouse and human Hs68 skin fibroblast cells. All the results indicated that the 3D printing of PLA-based tablets could produce customized medications with potential applications against HIV.
Collapse
Affiliation(s)
- Bodethala Narayanan Vedha Hari
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland; Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland
| | - Przemysław Sowiński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland
| | - Agnieszka Domańska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland.
| |
Collapse
|
9
|
Evgenii T, Valerie L, Michelle Å, Nicole DG, Maria S, Thomas K, Julian Q, Jonas L. Impact of polymer chemistry on critical quality attributes of selective laser sintering 3D printed solid oral dosage forms. Int J Pharm X 2023; 6:100203. [PMID: 37564113 PMCID: PMC10410523 DOI: 10.1016/j.ijpx.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
The aim of this study is to investigate the influence of polymer chemistry on the properties of oral dosage forms produced using selective laser sintering (SLS). The dosage forms were printed using different grades of polyvinyl alcohol or copovidone in combination with indomethacin as the active pharmaceutical ingredient. The properties of the printed structures were assessed according to European Pharmacopoeia guidelines at different printing temperatures and laser scanning speeds in order to determine the suitable printing parameters. The results of the study indicate that the chemical properties of the polymers, such as dynamic viscosity, degree of hydrolyzation, and molecular weight, have significant impact on drug release and kinetics. Drug release rate and supersaturation can be modulated by selecting the appropriate polymer type. Furthermore, the physical properties of the dosage forms printed under the same settings are influenced by the selected polymer type, which determines the ideal manufacturing settings. This study demonstrates how the chemical properties of the polymer can determine the appropriate choice of manufacturing settings and the final properties of oral dosage forms produced using SLS.
Collapse
Affiliation(s)
- Tikhomirov Evgenii
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Levine Valerie
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Åhlén Michelle
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Di Gallo Nicole
- Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
| | - Strømme Maria
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| | - Kipping Thomas
- Merck KGaA, Frankfurter Str. 250, Postcode: D033/001, Darmstadt DE-642 93, Germany
| | - Quodbach Julian
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Lindh Jonas
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala SE-751 03, Box 35, Sweden
| |
Collapse
|
10
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
11
|
Pires FQ, Gross IP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Bao SN, Cunha-Filho M. In-situ formation of nanoparticles from drug-loaded 3D polymeric matrices. Eur J Pharm Sci 2023; 188:106517. [PMID: 37406970 DOI: 10.1016/j.ejps.2023.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The in-situ formation of nanoparticles from polymer-based solid medicines, although previously described, has been overlooked despite its potential to interfere with oral drug bioavailability. Such polymeric pharmaceuticals are becoming increasingly common on the market and can become even more popular due to the dizzying advance of 3D printing medicines. Hence, this work aimed to study this phenomenon during the dissolution of 3D printed tablets produced with three different polymers, hydroxypropylmethylcellulose acetate succinate (HPMCAS), polyvinyl alcohol (PVA), and Eudragit RL PO® (EUD RL) combined with plasticizers and the model drug naringenin (NAR). The components' interaction, dissolution behavior, and characteristics of the formed particles were investigated employing thermal, spectroscopic, mechanical, and chromatographic assays. All the systems generated stable spherical-shaped particles throughout 24 h, encapsulating over 25% of NAR. Results suggest encapsulation efficiencies variations may depend on interactions between polymer-drug, drug-plasticizer, and polymer-plasticizer, which formed stable nanoparticles even in the drug absence, as observed with the HPMCAS and EUD RL formulations. Additionally, components solubility in the medium and previous formulation treatments are also a decisive factor for nanoparticle formation. In particular, the treatment provided by hot-melt extrusion and FDM 3D printing affected the dissolution efficiency enhancing the interaction between the components, reverberating on particle size and particle formation kinetics mainly for HPMCAS and EUD RL. In conclusion, the 3D printing process influences the in-situ formation of nanoparticles, which can directly affect oral drug bioavailability and needs to be monitored.
Collapse
Affiliation(s)
- Felipe Q Pires
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Idejan P Gross
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Livia L Sa-Barreto
- University of Brasilia, Faculty of Ceilandia, 72220-900, Brasília, DF, Brazil
| | - Tais Gratieri
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Sonia N Bao
- University of Brasilia, Institute of Biological Sciences, Laboratório de Microscopia e Microanálise. 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil.
| |
Collapse
|
12
|
Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics 2023; 15:1448. [PMID: 37242690 PMCID: PMC10220923 DOI: 10.3390/pharmaceutics15051448] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
3D printing technology in medicine is gaining great attention from researchers since the FDA approved the first 3D-printed tablet (Spritam®) on the market. This technique permits the fabrication of various types of dosage forms with different geometries and designs. Its feasibility in the design of different types of pharmaceutical dosage forms is very promising for making quick prototypes because it is flexible and does not require expensive equipment or molds. However, the development of multi-functional drug delivery systems, specifically as solid dosage forms loaded with nanopharmaceuticals, has received attention in recent years, although it is challenging for formulators to convert them into a successful solid dosage form. The combination of nanotechnology with the 3D printing technique in the field of medicine has provided a platform to overcome the challenges associated with the fabrication of nanomedicine-based solid dosage forms. Therefore, the major focus of the present manuscript is to review the recent research developments that involved the formulation design of nanomedicine-based solid dosage forms utilizing 3D printing technology. Utilization of 3D printing techniques in the field of nanopharmaceuticals achieved the successful transformation of liquid polymeric nanocapsules and liquid self-nanoemulsifying drug delivery systems (SNEDDS) to solid dosage forms such as tablets and suppositories easily with customized doses as per the needs of the individual patient (personalized medicine). Furthermore, the present review also highlights the utility of extrusion-based 3D printing techniques (Pressure-Assisted Microsyringe-PAM; Fused Deposition Modeling-FDM) to produce tablets and suppositories containing polymeric nanocapsule systems and SNEDDS for oral and rectal administration. The manuscript critically analyzes contemporary research related to the impact of various process parameters on the performance of 3D-printed solid dosage forms.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
13
|
Ahmed MM, Fatima F, Alnami A, Alsenaidy M, Aodah AH, Aldawsari MF, Almutairy B, Anwer MK, Jafar M. Design and Characterization of Baricitinib Incorporated PLA 3D Printed Pills by Fused Deposition Modeling: An Oral Pill for Treating Alopecia Areata. Polymers (Basel) 2023; 15:polym15081825. [PMID: 37111972 PMCID: PMC10143920 DOI: 10.3390/polym15081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to develop three-dimensional (3D) baricitinib (BAB) pills using polylactic acid (PLA) by fused deposition modeling. Two strengths of BAB (2 and 4% w/v) were dissolved into the (1:1) PEG-400 individually, diluting it with a solvent blend of acetone and ethanol (27.8:18:2) followed by soaking the unprocessed 200 cm~6157.94 mg PLA filament in the solvent blend acetone-ethanol. FTIR spectrums of the 3DP1 and 3DP2 filaments calculated and recognized drug encapsulation in PLA. Herein, 3D-printed pills showed the amorphousness of infused BAB in the filament, as indicated by DSC thermograms. Fabricated pills shaped like doughnuts increased the surface area and drug diffusion. The releases from 3DP1 and 3DP2 were found to be 43.76 ± 3.34% and 59.14 ± 4.54% for 24 h. The improved dissolution in 3DP2 could be due to the higher loading of BAB due to higher concentration. Both pills followed Korsmeyer-Peppas' order of drug release. BAB is a novel JAK inhibitor that U.S. FDA has recently approved to treat alopecia areata (AA). Therefore, the proposed 3D printed tablets can be easily fabricated with FDM technology and effectively used in various acute and chronic conditions as personalized medicine at an economical cost.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aisha Alnami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Bjad Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| |
Collapse
|
14
|
Pariskar A, Sharma PK, Murty US, Banerjee S. Effect of Tartrazine as Photoabsorber for Improved Printing Resolution of 3D Printed "Ghost Tablets": Non-Erodible Inert Matrices. J Pharm Sci 2023; 112:1020-1031. [PMID: 36410417 DOI: 10.1016/j.xphs.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Stereolithography (SLA) 3D printing of pharmaceuticals suffers from the problem of light scattering, which leads to over-curing, resulting in the printing of objects that are non-compliant with design dimensions and the overloading of drugs. To minimize this problem, photoabsorbers such as tartrazine (food grade) can be used to absorb the stray light produced by scattering, leading to unintended photopolymerization. Ghost tablets (i.e., non-erodible inert matrices) were additively manufactured using SLA with varying ratios of polyethylene glycol diacrylate (PEGDA): polyethylene glycol (PEG) 300, along with tartrazine concentrations. The 3D printed ghost tablets containing maximum (0.03%) tartrazine were extremely precise in size and adhered to the nominal value of the metformin hydrochloride content. Resolution analysis reinstated the influence of tartrazine in achieving highly precise objects of even 0.07 mm2 area. Furthermore, 3D printed ghost tablets were characterized using analytical means, and swelling studies. Additionally, ghost tablets were tested for their mechanical robustness using dynamic mechanical and texture analysis, and were able to withstand strains of up to 5.0% without structural failure. The printed ghost tablets displayed a fast metformin hydrochloride release profile, with 93.14% release after 12 h when the PEG 300 ratio was at its maximum. Ghost tablets were also subjected to in vivo X-ray imaging, and the tablets remained intact even after four hours of administration and were eventually excreted in an intact form through fecal excretion.
Collapse
Affiliation(s)
- Amit Pariskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India.
| |
Collapse
|
15
|
Sustainable 3D Printing of Oral Films with Tunable Characteristics Using CMC-Based Inks from Durian Rind Wastes. Eur J Pharm Biopharm 2023; 186:30-42. [PMID: 36933810 DOI: 10.1016/j.ejpb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
With the growing interest in environmentally friendly and personalized medicines, new concept for combining three-dimensional printing (3DP) with natural-based biomaterials derived from agro-food wastes has emerged. This approach provides sustainable solutions for agricultural waste management and potential for developing of novel pharmaceutical products with tunable characteristics. This work demonstrated the feasibility of fabricating personalized theophylline films with four different structures (Full, Grid, Star, and Hilbert) using syringe extrusion 3DP and carboxymethyl cellulose (CMC) derived from durian rind wastes. Our findings suggested that all the CMC-based inks with shear thinning properties capable of being extruded smoothly through a small nozzle could potentially be used to fabricate the films with various complex printing patterns and high structural fidelity. The results also demonstrated that the film characteristics and release profiles could be easily modified by simply changing the slicing parameters (e.g., infill density and printing pattern). Amongst all formulations, Grid film, which was 3D-printed with 40% infill and a grid pattern, demonstrated a highly porous structure with high total pore volume. The voids between printing layers in Grid film increased theophylline release (up to 90% in 45 min) through improved wetting and water penetration. All findings in this study provide significant insight into how to modify film characteristics simply by digitally changing the printing pattern in slicer software without creating a new CAD model. This approach could help to simplify the 3DP process so that non-specialist users can easily implement it in community pharmacies or hospital on demand.
Collapse
|
16
|
Ayyoubi S, van Kampen EEM, Kocabas LI, Parulski C, Lechanteur A, Evrard B, De Jager K, Muller E, Wilms EW, Meulenhoff PWC, Ruijgrok EJ. 3D printed, personalized sustained release cortisol for patients with adrenal insufficiency. Int J Pharm 2022; 630:122466. [PMID: 36493969 DOI: 10.1016/j.ijpharm.2022.122466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The standard of care for patients with Adrenal Insufficiency (AI) is suboptimal. Administration of hydrocortisone three times a day produces plasma cortisol fluctuations associated with negative health outcomes. Furthermore, there is a high inter-individual variability in cortisol need, necessitating a personalized approach. It is hypothesized that a personalized, sustained release formulation would enhance the pharmacotherapy by mimicking the physiological cortisol plasma concentration at a higher level. Therefore, a novel 24 h sustained release 3D printed (3DP) hydrocortisone formulation has been developed (M3DICORT) by coupling hot-melt extrusion with fused deposition modeling. A uniform drug distribution in the 3DP tablets is demonstrated by a content of 101.66 ± 1.60 % with an acceptance value of 4.01. Furthermore, tablets had a stable 24 h dissolution profile where the intra-batch standard deviation was ± 2.8 % and the inter-batch standard deviation was ± 6.8 %. Tablet height and hydrocortisone content were correlated (R2 = 0.996), providing a tool for easy dose personalization. Tablets maintained critical quality attributes, such as dissolution profile (f2 > 60) and content uniformity after process transfer from a single-screw extruder to a twin-screw extruder. Impurities were observed in the final product which should be mitigated before clinical assessment. To our knowledge, M3DICORT is the first 3DP hydrocortisone formulation specifically developed for AI.
Collapse
Affiliation(s)
- S Ayyoubi
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - E E M van Kampen
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - L I Kocabas
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, the Netherlands
| | - C Parulski
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - B Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - K De Jager
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - E Muller
- Department of Pharmaceutical Quality Control, The Hague Hospital Pharmacy, Charlotte Jacobslaan 70, 2545 AB The Hague, the Netherlands
| | - E W Wilms
- Department of Pharmaceutical Quality Control, The Hague Hospital Pharmacy, Charlotte Jacobslaan 70, 2545 AB The Hague, the Netherlands
| | - P W C Meulenhoff
- Tridi Pharma B.V. M.H. Trompstraat 7, 3572 XS Utrecht, the Netherlands
| | - E J Ruijgrok
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
17
|
Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J Control Release 2022; 352:1071-1092. [PMID: 36351519 DOI: 10.1016/j.jconrel.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
The potential of the mucoadhesive film technology is hard to ignore, owing to perceived superior patient acceptability versus buccal tablets, and significant therapeutic opportunities compared to conventional oral drug delivery systems, especially for those who suffer from dysphagia. In spite of this, current translation from published literature into the commercial marketplace is virtually non-existent, with no authorised mucoadhesive buccal films available in the UK and very few available in the USA. This review seeks to provide an overview of the mucoadhesive buccal film technology and identify key areas upon which to focus scientific efforts to facilitate the wider adoption of this patient-centric dosage form. Several indications and opportunities for development were identified, while discussing the patient-related factors influencing the use of these dosage forms. In addition, an overview of the technologies behind the manufacturing of these films was provided, highlighting manufacturing methods like solvent casting, hot melt extrusion, inkjet printing and three-dimensional printing. Over thirty mucoadhesive polymers were identified as being used in film formulations, with details surrounding their mucoadhesive capabilities as well as their inclusion alongside other key formulation constituents provided. Lastly, the importance of physiologically relevant in vitro evaluation methodologies was emphasised, which seek to improve in vivo correlations, potentially leading to better translation of mucoadhesive buccal films from the literature into the commercial marketplace.
Collapse
|
18
|
Preparation and advanced characterization of highly drug-loaded, 3D printed orodispersible tablets containing fluconazole. Int J Pharm 2022; 630:122444. [PMID: 36503848 DOI: 10.1016/j.ijpharm.2022.122444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Due to the possibility of designing various spatial structures, three-dimensional printing can be implemented in the production of customized medicines. Nevertheless, the use of these methods for the production of dosage forms requires further optimization, understanding, and development of printouts' quality verification mechanisms. Therefore, the goal of our work was the preparation and advanced characterization of 3D printed orodispersible tablets (ODTs) containing fluconazole, printed by the fused deposition modeling (FDM) method. We prepared and analyzed 7 printable filaments containing from 10% to 70% fluconazole, used as model API. Obtaining a FDM-printable filament with such a high API content makes our work unique. In addition, we confirmed the 12-month stability of the formulation, which, to our knowledge, is the first study of this type. Next, we printed 10 series of porous tablets containing 50 mg of API from both fresh and stored filaments containing 20 %, 40 %, or 70 % fluconazole. We confirmed the high quality and precision of the printouts using scanning electron microscopy. The detailed analysis of the tablets' disintegration process included the Pharmacopeial test, but also the surface dissolution imaging analysis (SDI) and the test simulating oral conditions performed in own-constructed apparatus. For each composition, we obtained tablets disintegrating in less than 3 min, i.e., meeting the criteria for ODTs required by the European Pharmacopeia. The filaments' storage at ambient conditions did not affect the quality of the tablets. All printed tablets released over 95% of the fluconazole within 30 min. Moreover, the printouts were stable for two weeks.
Collapse
|
19
|
Jain A, Subbarao K, McGinty S, Pontrelli G. Optimization of Initial Drug Distribution in Spherical Capsules for Personalized Release. Pharm Res 2022; 39:2607-2620. [PMID: 36071351 DOI: 10.1007/s11095-022-03359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Customization of the rate of drug delivered based on individual patient requirements is of paramount importance in the design of drug delivery devices. Advances in manufacturing may enable multilayer drug delivery devices with different initial drug distributions in each layer. However, a robust mathematical understanding of how to optimize such capabilities is critically needed. The objective of this work is to determine the initial drug distribution needed in a spherical drug delivery device such as a capsule in order to obtain a desired drug release profile. METHODS This optimization problem is posed as an inverse mass transfer problem, and optimization is carried out using the solution of the forward problem. Both non-erodible and erodible multilayer spheres are analyzed. Cases with polynomial forms of initial drug distribution are also analyzed. Optimization is also carried out for a case where an initial burst in drug release rate is desired, followed by a constant drug release rate. RESULTS More than 60% reduction in root-mean-square deviation of the actual drug release rate from the ideal constant drug release rate is reported. Typically, the optimized initial drug distribution in these cases prevents or minimizes large drug release rate at early times, leading to a much more uniform drug release overall. CONCLUSIONS Results demonstrate potential for obtaining a desired drug delivery profile over time by carefully engineering the drug distribution in the drug delivery device. These results may help engineer devices that offer customized drug delivery by combining advanced manufacturing with mathematical optimization.
Collapse
Affiliation(s)
- Ankur Jain
- Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.
| | - Kamesh Subbarao
- Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK.,Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
20
|
Fabrication of a Shell-Core Fixed-Dose Combination Tablet Using Fused Deposition Modeling 3D Printing. Eur J Pharm Biopharm 2022; 177:211-223. [PMID: 35835328 DOI: 10.1016/j.ejpb.2022.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
Fixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP). Atorvastatin calcium and Amlodipine besylate loaded filaments were prepared by hot-melt extrusion. Shell-core FDC tablets were designed to have different infills for individualized dosing. Differential scanning calorimetry and powder X-ray diffraction revealed that both drugs were transformed into amorphous forms within the polymeric carriers. The fabricated tablets met the United States Pharmacopeia acceptance criteria for friability, content uniformity, and dissolution testing. The fabricated tablets were stable at room temperature with respect to drug content and thermal behavior over six months. This dynamic dosage form provides flexibility in dose titration and maintains the advantages of FDCs, thus achieving optimal therapeutic outcomes in different healthcare facilities.
Collapse
|
21
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
22
|
The Advent of a New Era in Digital Healthcare: A Role for 3D Printing Technologies in Drug Manufacturing? Pharmaceutics 2022; 14:pharmaceutics14030609. [PMID: 35335984 PMCID: PMC8952205 DOI: 10.3390/pharmaceutics14030609] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The technological revolution has physically affected all manufacturing domains, at the gateway of the fourth industrial revolution. Three-dimensional (3D) printing has already shown its potential in this new reality, exhibiting remarkable applications in the production of drug delivery systems. As part of this concept, personalization of the dosage form by means of individualized drug dose or improved formulation functionalities has concentrated global research efforts. Beyond the manufacturing level, significant parameters must be considered to promote the real-time manufacturing of pharmaceutical products in distributed areas. The majority of current research activities is focused on formulating 3D-printed drug delivery systems while showcasing different scenarios of installing 3D printers in patients' houses, hospitals, and community pharmacies, as well as in pharmaceutical industries. Such research presents an array of parameters that must be considered to integrate 3D printing in a future healthcare system, with special focus on regulatory issues, drug shortages, quality assurance of the product, and acceptability of these scenarios by healthcare professionals and public parties. The objective of this review is to critically present the spectrum of possible scenarios of 3D printing implementation in future healthcare and to discuss the inevitable issues that must be addressed.
Collapse
|
23
|
Panraksa P, Zhang B, Rachtanapun P, Jantanasakulwong K, Qi S, Jantrawut P. ‘Tablet-in-Syringe’: A Novel Dosing Mechanism for Dysphagic Patients Containing Fast-Disintegrating Tablets Fabricated Using Semisolid Extrusion 3D Printing. Pharmaceutics 2022; 14:pharmaceutics14020443. [PMID: 35214175 PMCID: PMC8879151 DOI: 10.3390/pharmaceutics14020443] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
With the ability to fabricate personalized dosage forms and considerably shorter manufacturing time, semisolid extrusion (SSE) 3D printing has rapidly grown in popularity in recent years as a novel, versatile manufacturing method that powers a wide range of applications in the pharmaceutical field. In this work, the feasibility of using SSE 3D printing to fabricate fast-disintegrating tablets (FDTs) that are pre-filled in dosing syringes was evaluated. The novel design approach, ‘tablet-in-syringe’, was aimed to ease the oral drug administration and improve the dosing accuracy for dysphagic patients. The effect of varying polymer (hydroxypropyl methylcellulose E15) concentrations and printing parameters (e.g., extrusion rate) on dimensional accuracy, physicochemical properties, disintegration time, and content uniformity of 3D-printed FDTs was studied. An overall comparison of results demonstrated that the best FDT formulation among those developed was with a polymer:drug ratio (w/w) of 1:30, printed at extrusion rate of 3.5 μL/s. The diameter of printed filaments of this formulation was observed to be similar to the nozzle diameter (22G), proving that good printing accuracy was achieved. This FDTs also had the fastest disintegration time (0.81 ± 0.14 min) and a drug (phenytoin sodium, as the model drug) content uniformity that met pharmacopeial specifications. Although the flow characteristics of the dissolved formulation still need improvement, our findings suggested that the novel ‘tablet-in-syringe’ could potentially be considered as a promising fast-disintegrating drug delivery system that can be personalized and manufactured at—or close to—the point of care for dysphagic patients using SSE.
Collapse
Affiliation(s)
- Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Bin Zhang
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Pornchai Rachtanapun
- Division of Packaging Technology, Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Division of Packaging Technology, Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK;
- Correspondence: (S.Q.); or (P.J.); Tel.: +44-1603592925 (S.Q.); +66-53944309 (P.J.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: (S.Q.); or (P.J.); Tel.: +44-1603592925 (S.Q.); +66-53944309 (P.J.)
| |
Collapse
|
24
|
Coupling of Fused Deposition Modeling and Inkjet Printing to Produce Drug Loaded 3D Printed Tablets. Pharmaceutics 2022; 14:pharmaceutics14010159. [PMID: 35057054 PMCID: PMC8781861 DOI: 10.3390/pharmaceutics14010159] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 01/30/2023] Open
Abstract
In the current study, we have coupled Fused Deposition Modelling (FDM) for the fabrication of plain polyvinyl alcohol (PVA) tablets followed by dispensing of minoxidil ethanolic solutions using inkjet printing. The use of a drop-on-solid printing approach facilitates an accurate and reproducible process while it controls the deposition of the drug amounts. For the purpose of the study, the effect of the solvent was investigated and minoxidil ink solutions of ethanol 70% v/v (P70) or absolute ethanol (P100) were applied on the plain PVA tablets. Physicochemical characterization showed that solvent miscibility with the polymer substrate plays a key role and can lead to the formation of drug crystals on the surface or drug absorption in the polymer matrix. The produced minoxidil tablets showed sustained release profiles or initial bursts strongly affected by the solvent grade used for dispensing the required dose on drug loaded 3D printed tablets. This paradigm demonstrates that the coupling of FDM and inkjet printing technologies could be used for rapid development of personalized dosage forms.
Collapse
|
25
|
Thanawuth K, Sutthapitaksakul L, Konthong S, Suttiruengwong S, Huanbutta K, Dass CR, Sriamornsak P. Impact of Drug Loading Method on Drug Release from 3D-Printed Tablets Made from Filaments Fabricated by Hot-Melt Extrusion and Impregnation Processes. Pharmaceutics 2021; 13:pharmaceutics13101607. [PMID: 34683900 PMCID: PMC8538863 DOI: 10.3390/pharmaceutics13101607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the impact of the drug loading method on drug release from 3D-printed tablets. Filaments comprising a poorly water-soluble model drug, indomethacin (IND), and a polymer, polyvinyl alcohol (PVA), were prepared by hot-melt extrusion (HME) and compared with IND-loaded filaments prepared with an impregnation (IMP) process. The 3D-printed tablets were fabricated using a fused deposition modeling 3D printer. The filaments and 3D printed tablets were evaluated for their physicochemical properties, swelling and matrix erosion behaviors, drug content, and drug release. Physicochemical investigations revealed no drug–excipient interaction or degradation. IND-loaded PVA filaments produced by IMP had a low drug content and a rapid drug release. Filaments produced by HME with a lower drug content released the drug faster than those with a higher drug content. The drug content and drug release of 3D-printed tablets containing IND were similar to those of the filament results. Particularly, drug release was faster in 3D-printed tablets produced with filaments with lower drug content (both by IMP and HME). The drug release of 3D-printed tablets produced from HME filaments with higher drug content was extended to 24 h due to a swelling-erosion process. This study confirmed that the drug loading method has a substantial influence on drug content, which in turn has a significant effect on drug release. The results suggest that increasing the drug content in filaments might delay drug release from 3D-printed tablets, which may be used for developing dosage forms suited for personalized medicine.
Collapse
Affiliation(s)
- Kasitpong Thanawuth
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (L.S.)
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
| | - Lalinthip Sutthapitaksakul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (L.S.)
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
| | - Srisuda Konthong
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Kampanart Huanbutta
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Crispin R. Dass
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia;
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.T.); (L.S.)
- Pharmaceutical Biopolymer Group (PBiG), Silpakorn University, Nakhon Pathom 73000, Thailand; (S.K.); (K.H.)
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence:
| |
Collapse
|