1
|
Gao L, Meng F, Yang Z, Lafuente-Merchan M, Fernández LM, Cao Y, Kusamori K, Nishikawa M, Itakura S, Chen J, Huang X, Ouyang D, Riester O, Deigner HP, Lai H, Pedraz JL, Ramalingam M, Cai Y. Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives. Biomed Pharmacother 2024; 179:117327. [PMID: 39216449 DOI: 10.1016/j.biopha.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women. Chemotherapy continues to be the treatment of choice for clinically combating it. Nevertheless, the chemotherapy process is frequently hindered by multidrug resistance, thereby impacting the effectiveness of the treatment. Multidrug resistance (MDR) refers to the phenomenon in which malignant tumour cells develop resistance to anticancer drugs after one single exposure. It can occur with a broad range of chemotherapeutic drugs with distinct chemical structures and mechanisms of action, and it is one of the major causes of treatment failure and disease relapse. Research has long been focused on overcoming MDR by using multiple drug combinations, but this approach is often associated with serious side effects. Therefore, there is a pressing need for in-depth research into the mechanisms of MDR, as well as the development of new drugs to reverse MDR and improve the efficacy of breast cancer chemotherapy. This article reviews the mechanisms of multidrug resistance and explores the application of nano-drug delivery system (NDDS) to overcome MDR in breast cancer. The aim is to offer a valuable reference for further research endeavours.
Collapse
Affiliation(s)
- Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Laura Merino Fernández
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Kosuke Kusamori
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Junqian Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaoxun Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA.
| | - Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Jose Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| |
Collapse
|
2
|
Cui M, Liu Y, Liu Y, Li T, Chen X, Da L. Oral nano-formulations for endocrine therapy of endometrioid adenocarcinomas. Biomed Pharmacother 2024; 179:117328. [PMID: 39243435 DOI: 10.1016/j.biopha.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Endometrial cancer is one of the three major malignant tumors of the reproductive system that threaten women's lives and health. The incidence of this disease is on the rise globally. Most cases of endometrial cancer comprise endometrioid adenocarcinomas, whose treatment is challenged by factors such as their high recurrence rate and the need to preserve fertility among young patients. Thus, oral endocrine therapy has become the main treatment modality. The main drugs used in oral endocrine therapy are progestins, selective estrogen receptor antagonists, and aromatase inhibitors. However, their clinical use is hindered by their low solubility and low oral utilization. The rapid development of nanotechnology allows the combination of these drugs with oral nano-formulations to create a good carrier. Such nanocarriers, including nanospheres, nanocapsules, and micelles can protect the drug against clearance and increase the site specificity of drug delivery. This paper reviews the pathogenesis of endometrioid endometrial cancer (EEC) and oral nano-formulations for endocrine therapy.
Collapse
Affiliation(s)
- Minghua Cui
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuehui Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yangyang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tao Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xin Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Liu Da
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
Seku K, Bhagavanth Reddy G, Osman AI, Hussaini SS, Kumar NS, Al-Abri M, Pejjai B, Alreshaidan SB, Al-Fatesh AS, Kadimpati KK. Modified frankincense resin stabilized gold nanoparticles for enhanced antioxidant and synergetic activity in in-vitro anticancer studies. Int J Biol Macromol 2024; 278:134935. [PMID: 39179088 DOI: 10.1016/j.ijbiomac.2024.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
For the first time, Frankincense resin (FR) has been carboxymethylated to produce CMFR - AuNPs and the conjugate was utilized for the Doxorubicin drug loading. The carboxymethylation of the carboxylic, phenolic, and hydroxyl functional groups of FR has been developed into carboxymethylated Frankincense resin (CMFR). A novel CMFR-AuNPs was synthesized using the developed CMFR as a stabilizing and reducing agent. The antibacterial, antioxidant, and in-vitro anticancer activities were investigated by using CMFR-AuNPs and CMFR - AuNPs@DOX. CMFR-AuNPs demonstrated antioxidative properties by quenching DPPH radicals effectively. CMFR-AuNPs and DOX@CMFR-AuNPs demonstrated strong antibacterial activity against K. pneumoniae, S. aureus, B. subtilis, and E. coli. The cell viability was tested for CMFR -AuNPs at various concentrations of Dox-loaded CMFR -AuNPs (CMFR-AuNPs + Dox1, CMFR-AuNPs + Dox 2, & CMFR-AuNPs + Dox 3). The highest inhibition was observed on MCF-7 and HeLa cell lines using CMFR-AuNPs + Dox 3, respectively. Various techniques such as UV, FTIR, TGA, XRD, SEM, EDAX and TEM were used to characterize the designed CMFR and CMFR-AuNPs. After carboxy methylation, the amorphous nature of FR changed to crystallinity, as reflected in the XRD spectra. The XRD spectrum of the CMFR- AuNPs showed FCC structure due to the involvement of hydroxyl and carboxylic functional groups of CMFR strongly bound with the AuNPs. TGA results revealed that the CMFR is thermally more stable than FR. TEM revealed that CMFR - AuNPs were well dispersed, spherical, and hexagonal with an average diameter of 7 to 10 nm, while the size of doxorubicin loaded (DOX@CMFR-AuNPs) AuNPs was 11 to 13 nm. Green CMFR-AuNPs have the potential to enhance the drug loading and anticancer efficacy of drugs.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman.
| | - G Bhagavanth Reddy
- Department of Chemistry, Palamuru University PG Center, Wanaparthy, Telangana State, India
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom of Great Britain and Northern Ireland.
| | - Syed Sulaiman Hussaini
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Babu Pejjai
- Department of Physics, Sri Venkateshwara College of Engineering, Karakambadi Road, Tirupati 517507, India
| | - Salwa B Alreshaidan
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Akademicka 2, Silesian University of Technology, 44 - 100 Gliwice, Poland.
| |
Collapse
|
4
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
5
|
Aldawsari HM, Singh S, Alhakamy NA, Bakhaidar RB, Halwani AA, Badr-Eldin SM. RETRACTED: Aldawsari et al. Gum Acacia Functionalized Colloidal Gold Nanoparticles of Letrozole as Biocompatible Drug Delivery Carrier for Treatment of Breast Cancer. Pharmaceutics 2021, 13, 1554. Pharmaceutics 2024; 16:721. [PMID: 38931961 PMCID: PMC11206319 DOI: 10.3390/pharmaceutics16060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The Pharmaceutics Editorial Office retracts the article, "Gum Acacia Functionalized Colloidal Gold Nanoparticles of Letrozole as Biocompatible Drug Delivery Carrier for Treatment of Breast Cancer" [...].
Collapse
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sima Singh
- IES Institute of Pharmacy, IES University Campus, Bhopal 462044, India;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
| | - Abdulrahman A. Halwani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Barkeer S, Pothuraju R, Malakar P, Pimentel TC, Siddiqui JA, Nair SA. Gum acacia dietary fiber: Significance in immunomodulation, inflammatory diseases, and cancer. Phytother Res 2024; 38:1509-1521. [PMID: 38272848 DOI: 10.1002/ptr.8125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024]
Abstract
Gum arabic/acacia (GA), derived from Acacia trees, is a versatile natural product offering a broad spectrum of applications. Its rich content of soluble dietary fibers, coupled with a low caloric profile, renders GA a valuable dietary component associated with numerous health benefits. Furthermore, its fermentation by gut microbiota yields short-chain fatty acids, renowned for their positive impact on health. Immunomodulation, a crucially regulated mechanism in the body, serves to fend off pathogenic infections by releasing pro-inflammatory cytokines. However, prolonged synthesis of these cytokines can lead to chronic inflammation, tissue damage, and potentially contribute to the development of autoimmune diseases and cancer. Hence, there is an urgent need to identify plant-based biomolecules that can effectively reduce inflammation and inhibit inflammation-induced complications or disorders. In this context, edible biomolecules like GA are gaining prominence for their noteworthy immunomodulatory properties. Therefore, in the present review we have explored the role of GA in immunomodulation, inflammation, and inflammation-associated metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry, College of Agriculture, Gangavathi, University of Agricultural Sciences, Raichur, India
| | - Ramesh Pothuraju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, India
| | | | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, USA
| | - S Asha Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
7
|
Zahoor AF, Saeed S, Rasul A, Noreen R, Irfan A, Ahmad S, Faisal S, Al-Hussain SA, Saeed MA, Muhammed MT, Muhammad ZA, Zaki MEA. Synthesis, Cytotoxic, and Computational Screening of Some Novel Indole-1,2,4-Triazole-Based S-Alkylated N-Aryl Acetamides. Biomedicines 2023; 11:3078. [PMID: 38002078 PMCID: PMC10669176 DOI: 10.3390/biomedicines11113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular hybridization has emerged as the prime and most significant approach for the development of novel anticancer chemotherapeutic agents for combating cancer. In this pursuit, a novel series of indole-1,2,4-triazol-based N-phenyl acetamide structural motifs 8a-f were synthesized and screened against the in vitro hepatocellular cancer Hep-G2 cell line. The MTT assay was applied to determine the anti-proliferative potential of novel indole-triazole compounds 8a-f, which displayed cytotoxicity potential as cell viabilities at 100 µg/mL concentration, by using ellipticine and doxorubicin as standard reference drugs. The remarkable prominent bioactive structural hybrids 8a, 8c, and 8f demonstrated good-to-excellent anti-Hep-G2 cancer chemotherapeutic potential, with a cell viability of (11.72 ± 0.53), (18.92 ± 1.48), and (12.93 ± 0.55), respectively. The excellent cytotoxicity efficacy against the liver cancer cell line Hep-G2 was displayed by the 3,4-dichloro moiety containing indole-triazole scaffold 8b, which had the lowest cell viability (10.99 ± 0.59) compared with the standard drug ellipticine (cell viability = 11.5 ± 0.55) but displayed comparable potency in comparison with the standard drug doxorubicin (cell viability = 10.8 ± 0.41). The structure-activity relationship (SAR) of indole-triazoles 8a-f revealed that the 3,4-dichlorophenyl-based indole-triazole structural hybrid 8b displayed excellent anti-Hep-G2 cancer chemotherapeutic efficacy. The in silico approaches such as molecular docking scores, molecular dynamic simulation stability data, DFT, ADMET studies, and in vitro pharmacological profile clearly indicated that indole-triazole scaffold 8b could be the lead anti-Hep-G2 liver cancer therapeutic agent and a promising anti-Hep-G2 drug candidate for further clinical evaluations.
Collapse
Affiliation(s)
- Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Muhammad Athar Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.); (A.I.)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32000, Türkiye
| | - Zeinab A. Muhammad
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
8
|
Pinilla-Torres AM, Sanchez-Dominguez CN, Basilio-Bernabe K, Carrion-Garcia PY, Roacho-Perez JA, Garza-Treviño EN, Gallardo-Blanco H, Sanchez-Dominguez M. Green Synthesis of Mesquite-Gum-Stabilized Gold Nanoparticles for Biomedical Applications: Physicochemical Properties and Biocompatibility Assessment. Polymers (Basel) 2023; 15:3533. [PMID: 37688159 PMCID: PMC10490394 DOI: 10.3390/polym15173533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Using cytotoxic reducing and stabilizing agents in the synthesis of gold nanoparticles (AuNPs) limits their use in biomedical applications. One strategy to overcome this problem is using "green" synthesis methodologies using polysaccharides. In the present study, we propose a green methodology for synthetizing AuNPs with mesquite gum (MG) as a reducing agent and steric stabilizer in Gold(III) chloride trihydrate aqueous solutions to obtain biocompatible nanoparticles that can be used for biomedical applications. Through this method, AuNPs can be produced without using elevated temperatures or pressures. For synthetizing gold nanoparticles coated with mesquite gum (AuNPs@MG), Gold(III) chloride trihydrate was used as a precursor, and mesquite gum was used as a stabilizing and reducing agent. The AuNPs obtained were characterized using UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, scanning transmission electron microscopy, and FT-IR spectroscopy. The stability in biological media (phosphate buffer solution), cytotoxicity (MTT assay, hematoxylin, and eosin staining), and hemocompatibility (Hemolysis assay) were measured at different concentrations and exposure times. The results showed the successful synthesis of AuNPs@MG with sizes ranging from 3 to 30 nm and a zeta potential of -31 mV. The AuNPs@MG showed good colloidal stability in PBS (pH 7.4) for up to 24 h. Finally, cytotoxicity assays showed no changes in cell metabolism or cell morphology. These results suggest that these gold nanoparticles have potential biomedical applications because of their low cytotoxicity and hemotoxicity and improved stability at a physiological pH.
Collapse
Affiliation(s)
- Ana M. Pinilla-Torres
- Grupo de Química Coloidal e Interfacial Aplicada a Nanomateriales y Formulaciones, Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico; (A.M.P.-T.)
| | - Celia N. Sanchez-Dominguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (C.N.S.-D.); (P.Y.C.-G.); (J.A.R.-P.); (E.N.G.-T.)
| | - Karla Basilio-Bernabe
- Grupo de Química Coloidal e Interfacial Aplicada a Nanomateriales y Formulaciones, Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico; (A.M.P.-T.)
| | - Paola Y. Carrion-Garcia
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (C.N.S.-D.); (P.Y.C.-G.); (J.A.R.-P.); (E.N.G.-T.)
| | - Jorge A. Roacho-Perez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (C.N.S.-D.); (P.Y.C.-G.); (J.A.R.-P.); (E.N.G.-T.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (C.N.S.-D.); (P.Y.C.-G.); (J.A.R.-P.); (E.N.G.-T.)
| | - Hugo Gallardo-Blanco
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Margarita Sanchez-Dominguez
- Grupo de Química Coloidal e Interfacial Aplicada a Nanomateriales y Formulaciones, Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico; (A.M.P.-T.)
| |
Collapse
|
9
|
Foudah AI, Alam A, Salkini MA, Ross SA, Kumar P, Aldawsari MF, Alqarni MH, Sweilam SH. Synergistic Combination of Letrozole and Berberine in Ascorbic Acid-Stabilized AuNPs: A Promising Solution for Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1099. [PMID: 37631014 PMCID: PMC10459502 DOI: 10.3390/ph16081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is a deadly disease that affects countless women worldwide. The most conventional treatments for breast cancer, such as the administration of anticancer medications such as letrozole (LTZ), pose significant barriers due to the non-selective delivery and low bioavailability of cytotoxic drugs leading to serious adverse effects and multidrug resistance (MDR). Addressing these obstacles requires an innovative approach, and we propose a combined strategy that synergistically incorporates LTZ with berberine (BBR) into stabilised AuNPs coated with ascorbic acid (AA), known as LTZ-BBR@AA-AuNPs. The LTZ-BBR@AA-AuNPs, a novel combined drug delivery system, were carefully designed to maximise the entrapment of both LTZ and BBR. The resulting spherical nanoparticles exhibited remarkable efficiency in trapping these two compounds, with rates of 58% and 54%, respectively. In particular, the average hydrodynamic diameter of these nanoparticles was determined to be 81.23 ± 4.0 nm with a PDI value of only 0.286, indicating excellent uniformity between them. Furthermore, their zeta potential was observed to be -14.5 mV, suggesting high stability even under physiological conditions. The release profiles showed that after being incubated for about 24 h at pH levels ranging from acidic (pH = 5) to basic (pH = 7), the percentage released for both drugs ranged from 56-72%. This sustained and controlled drug release can reduce any negative side effects while improving therapeutic efficacy when administered directly to cancer. MDA-MB-231 cells treated with LTZ-BBR@AA-AuNPs for 48 h exhibited IC50 values of 2.04 ± 0.011 μg/mL, indicating potent cytotoxicity against cells. Furthermore, the nanoparticles demonstrated excellent stability throughout the duration of the treatment.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India;
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.A.); (M.A.S.); (M.H.A.); (S.H.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| |
Collapse
|
10
|
Moghaddam FD, Heidari G, Zare EN, Djatoubai E, Paiva-Santos AC, Bertani FR, Wu A. Carbohydrate polymer-based nanocomposites for breast cancer treatment. Carbohydr Polym 2023; 304:120510. [PMID: 36641174 DOI: 10.1016/j.carbpol.2022.120510] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Breast cancer is known as the most common invasive malignancy in women with the highest mortality rate worldwide. This concerning disease may be presented in situ (relatively easier treatment) or be invasive, especially invasive ductal carcinoma which is highly worrisome nowadays. Among several strategies used in breast cancer treatment, nanotechnology-based targeted therapy is currently being investigated, as it depicts advanced technological features able of preventing drugs' side effects on normal cells while effectively acting on tumor cells. In this context, carbohydrate polymer-based nanocomposites have gained particular interest among the biomedical community for breast cancer therapy applications due to their advantage features, including abundance in nature, biocompatibility, straightforward fabrication methods, and good physicochemical properties. In this review, the physicochemical properties and biological activities of carbohydrate polymers and their derivate nanocomposites were discussed. Then, various methods for the fabrication of carbohydrate polymer-based nanocomposites as well as their application in breast cancer therapy and future perspectives were discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Golnaz Heidari
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
| | | | - Essossimna Djatoubai
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MPFE), Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, PR China
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
11
|
Alam A, Ansari MJ, Alqarni MH, Salkini MA, Raish M. Antioxidant, Antibacterial, and Anticancer Activity of Ultrasonic Nanoemulsion of Cinnamomum Cassia L. Essential Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040834. [PMID: 36840181 PMCID: PMC9966450 DOI: 10.3390/plants12040834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/01/2023]
Abstract
Cinnamomum cassia (C. assia) has long been used in traditional holistic medicine for its medicinal properties. It is used as an antioxidant, antibacterial, anti-inflammatory and anticancer agent. Cinnamon, in particular, the essential oil of C. cassia, has significant biological properties. Despite this, the volatility, stability, and insolubility of C. cassia essential oil (CEO) remain the main disadvantages that limit its application, ultimately affecting its pharmacological efficacy. To find a solution to this problem, we developed the CEO nanoemulsion (CEO-NE). For lipophilic compounds, insoluble nanoemulsion-based formulations are a popular delivery strategy. In this research work, a highly stable dosage form named CEO-NE was successfully developed using polysorbate 80 and water. The findings show that the synthesized CEO has a uniform shape with a PDI of 0.380 and an adequate particle size of 221.8 nm. The antioxidant outcomes show excellent results for CEO-NE compared to CEO against DPPH and hydrogen peroxide. The obtained antibacterial activity of CEO-NE was more efficient than that of CEO against Klebsiella pneumonia (MTCC 8911) with 0.025% and 0.05%, respectively. The CEO-NE preparation was tested against an alveolar lung adenocarcinoma cell line (A549) with an IC50 of 50.21 µg/mL for CEO and 18.05 µg/mL for CEO-NE, respectively. These results are encouraging for future translational studies on CEO-NE use in lung cancer therapy due to its excellent antioxidant, antibacterial, and killing kinetic properties.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Taratula O, Taratula OR. Novel Nanoparticle-Based Treatment and Imaging Modalities. Pharmaceutics 2023; 15:244. [PMID: 36678873 PMCID: PMC9861272 DOI: 10.3390/pharmaceutics15010244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Over the last twenty years, nanomaterials have been widely used in cancer research [...].
Collapse
Affiliation(s)
- Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| |
Collapse
|
13
|
Alam A, Foudah AI, Salkini MA, Raish M, Sawale J. Herbal Fennel Essential Oil Nanogel: Formulation, Characterization and Antibacterial Activity against Staphylococcus aureus. Gels 2022; 8:736. [PMID: 36421558 PMCID: PMC9689951 DOI: 10.3390/gels8110736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 03/09/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to humanity in the world. Antibiotic-resistant bacteria spread easily in communities and hospitals. Staphylococcus aureus (S. aureus) is a serious human infectious agent with threatening broad-spectrum resistance to many commonly used antibiotics. To prevent the spread of pathogenic microorganisms, alternative strategies based on nature have been developed. Essential oils (EOs) are derived from numerous plant parts and have been described as antibacterial agents against S. aureus. Fennel essential oils were selected as antibacterial agents encapsulated in nanoparticles of polylactic acid and glycolic acid (PLGA). The optimum size of the formulation after loading with the active ingredient was 123.19 ± 6.1595 nm with a zeta potential of 0.051 ± 0.002 (23 ± 1.15 mV). The results of the encapsulation efficiency analysis showed high encapsulation of EOs, i.e., 66.4 ± 3.127. To obtain promising carrier materials for the delivery of fennel EOs, they were incorporated in the form of nanogels. The newly developed fennel oils in PLGANPs nanogels have good drug release and MIC against S. aureus. These results indicate the potential of this novel delivery system for antimicrobial therapy.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jyotiram Sawale
- IES Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, India
| |
Collapse
|
14
|
Alam A, Jawaid T, Alsanad SM, Kamal M, Rawat P, Singh V, Alam P, Alam P. Solubility Enhancement, Formulation Development, and Antibacterial Activity of Xanthan-Gum-Stabilized Colloidal Gold Nanogel of Hesperidin against Proteus vulgaris. Gels 2022; 8:gels8100655. [PMID: 36286156 PMCID: PMC9601670 DOI: 10.3390/gels8100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022] Open
Abstract
The objective of the study was to develop a transdermal nanoformulation of hesperidin (HSP) against Proteus vulgaris (P. vulgaris). Based on the low water solubility of HSP, we prepared HSP-enabled AuNPs stabilized with xanthan gum (XA), referred to as HSP@XA@AuNPs. The HSP@XA@AuNP formulation was evaluated for particle size (43.16 nm), PDI (0.565), zeta potential (−31.9 mV), and entrapment efficiency (56.7%). The HSP@XA@AuNPs gel was developed by incorporating selected formulation grades into a 1% Carbopol gel base and characterized by physical evaluation and rheological studies. The color of the HSP@XA@AuNP gel was light pink, and the texture was very smooth and non-greasy. The gel was shown to be odorless. A field emission scanning electron microscope (FESEM) was used to investigate the shape of HSP@XA@AuNPs further. The drug release was 73.08% for the HSP@XA@AuNPs and 86.26% for the HSP@XA@AuNPs gel in 500 min. The prepared gel showed antimicrobial activity against P. vulgaris with an MIC of 1.78 μg/mL. In conclusion, the HSP@XA@AuNPs gel could be an advanced modality for treating P. vulgaris.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Correspondence:
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Saud M. Alsanad
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Pinki Rawat
- Maharana Pratap College of Pharmacy, Kanpur 209217, Uttar Pradesh, India
| | - Vinita Singh
- IES Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
15
|
Alqarni MH, Foudah AI, Alam A, Salkini MA, Muharram MM, Labrou NE, Kumar P. Development of Gum-Acacia-Stabilized Silver Nanoparticles Gel of Rutin against Candida albicans. Gels 2022; 8:gels8080472. [PMID: 36005073 PMCID: PMC9407585 DOI: 10.3390/gels8080472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/28/2022] Open
Abstract
Candida spp. is one of the most causative pathogens responsible for fungal infections. It is often a hospital-acquired form of sepsis with a very high number of deaths. Currently, the most effective anti-fungal agents are based on polyenes or echinocandins. However, long-term treatments or repeated use of these anti-fungals lead to therapy limitations. Current research is urgently needed to overcome existing challenges for antimicrobials from natural sources. This study aims to determine the anti-fungal activity of rutin, which has the advantage of increasing the therapeutic value. Because of its low solubility in water and oils, rutin is limited in use. To address these constraints, we encapsulated rutin in a nanocarrier system. Silver nanoparticles (SNPs) and gum acacia (GAs) are emerging as attractive components and are widely studied as biologically safe nanomaterials/carrier systems for various drugs. Still, they are barely investigated as nano-sized vectors for the targeted delivery of rutin. In the present work, GA stabilised SNPs of rutin were successfully formulated and evaluated. It was later incorporated into carbapol 940 gels and formed SNP gels. Rutin-SNPs were developed with a consistent size in the nano range of 59.67 ± 44.24 nm in size, 0.295 ± 0.014 polydispersity index (PDI), and −11.2 ± 6.66 mV zeta potential. The drug released was found to be 81. 26 ± 4.06% in 600 min by following zero-order kinetics. The rutin-SNP gel showed considerable activity against C. albicans skin candidiasis at MIC 1.56 g/mL. The developed formulation was biocompatible. This first-ever interdisciplinary study suggests that the rutin-SNPs gel could play a vital role in drug resistance in this fungal pathogen.
Collapse
Affiliation(s)
- Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
- Correspondence:
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
| | - Mohammad A. Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (A.I.F.); (A.A.); (M.A.S.)
| | - Magdy M. Muharram
- Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece;
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India;
| |
Collapse
|