1
|
Zhu J, Ma J, Huang M, Deng H, Shi G. Emerging delivery strategy for oncolytic virotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200809. [PMID: 38845744 PMCID: PMC11153257 DOI: 10.1016/j.omton.2024.200809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Oncolytic virotherapy represents a promising approach in cancer immunotherapy. The primary delivery method for oncolytic viruses (OVs) is intratumoral injection, which apparently limits their clinical application. For patients with advanced cancer with disseminated metastasis, systemic administration is considered the optimal approach. However, the direct delivery of naked viruses through intravenous injection presents challenges, including rapid clearance by the immune system, inadequate accumulation in tumors, and significant side effects. Consequently, the development of drug delivery strategies has led to the emergence of various bio-materials serving as viral vectors, thereby improving the anti-tumor efficacy of oncolytic virotherapy. This review provides an overview of innovative strategies for delivering OVs, with a focus on nanoparticle-based or cell-based delivery systems. Recent pre-clinical and clinical studies are examined to highlight the enhanced efficacy of systemic delivery using these novel platforms. In addition, prevalent challenges in current research are briefly discussed, and potential solutions are proposed.
Collapse
Affiliation(s)
- Jiao Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Yang J, Xu Y, Fu Z, Chen J, Fan W, Wu X. Progress in research and development of temozolomide brain-targeted preparations: a review. J Drug Target 2023; 31:119-133. [PMID: 36039767 DOI: 10.1080/1061186x.2022.2119243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gliomas are a heterogeneous group of brain tumours with high malignancy, for which surgical resection remains the mainstay of treatment at present. However, the overall prognosis of gliomas remains poor because of their aggressiveness and high recurrence. Temozolomide (TMZ) has anti-proliferative and cytotoxic effects and is indicated for glioblastoma multiforme and recurrent mesenchymal astrocytoma. However, TMZ is disadvantaged by low efficacy and drug resistance, and therefore it is necessary to enhance the brain drug concentration of TMZ to improve its effectiveness and reduce the toxic and adverse effects from systemic administration. There have been many nano-formulations developed for the delivery of TMZ to gliomas that overcome the limitations of TMZ penetration to tumours and increase brain targeting. In this paper, we review the research progress of TMZ nano-formulations, and also discuss challenges and opportunities in the research and development of drug delivery systems, hoping that the data and information summarised herein could provide assistance for the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Zhiqin Fu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
3
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Guliy OI, Staroverov SA, Fomin AS, Zhnichkova EG, Kozlov SV, Lovtsova LG, Dykman LA. Polymeric Micelles for Targeted Drug Delivery System. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Petrisor G, Motelica L, Ficai D, Trusca RD, Surdu VA, Voicu G, Oprea OC, Ficai A, Andronescu E. New Mesoporous Silica Materials Loaded with Polyphenols: Caffeic Acid, Ferulic Acid and p-Coumaric Acid as Dietary Supplements for Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15227982. [PMID: 36431468 PMCID: PMC9696098 DOI: 10.3390/ma15227982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 05/13/2023]
Abstract
In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols-caffeic acid, p-coumaric acid and trans-ferulic acid-in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer-Emmet-Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH-simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Correspondence:
| | - Roxana Doina Trusca
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgeta Voicu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
6
|
Li Z, Zhang S, Liu M, Zhong T, Li H, Wang J, Zhao H, Tian Y, Wang H, Wang J, Xu M, Wang S, Zhang X. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Mol Pharm 2022; 19:4179-4190. [PMID: 36223494 DOI: 10.1021/acs.molpharmaceut.2c00553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various metal oxide nanomaterials have been widely used as carriers to prepare pH-sensitive nanomedicines to respond to the acidic tumor microenvironment promoting antitumor efficiency. Herein, we used zinc oxide nanoparticles (ZnO NPs) as metal oxide nanomaterial coated with low-molecular-weight heparin (LMHP) and doxorubicin (DOX) complex (LMHP-DOX) to prepare ZnO-LD NPs for controllable pH-triggered DOX release on the targeted site. Our results indicated that the released DOX from ZnO-LD NPs was pH-sensitive. The oxygen produced by ZnO-LD NPs in H2O2 solution was observed in in vitro experiment. The ZnO-LD NPs entered into both PC-3M and 4T1 tumor cells via clathrin-mediated endocytosis and micropinocytosis pathway. The intracellular reactive oxygen species (ROS) generated by ZnO-LD NPs could significantly increase the caspase 3/7 level, leading to tumor cell apoptosis. The in vitro and in vivo antitumor activity was confirmed in PC-3M and 4T1 cell lines or tumor-bearing mice models. The in vivo and in vitro tumor images via second-order nonlinearity of ZnO-LD NPs indicated that ZnO-LD NPs could penetrate deep into the tumor tissues. Therefore, the ZnO-LD NPs developed in our study could provide an efficient approach for the preparation of pH-sensitive nano delivery systems suitable for tumor therapy and imaging.
Collapse
Affiliation(s)
- Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Shuang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Man Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Heng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Yubo Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Hui Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Jingwen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Meiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Peking University, Xueyuan Road 38, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Beijing 100191, China
| |
Collapse
|