1
|
Paczkowska-Walendowska M, Karpiński TM, Garbiec E, Walendowski M, Cielecka-Piontek J. Implementing the Design of Experiments (DoE) Concept into the Development of Mucoadhesive Tablets Containing Orange Peel Extract as a Potential Concept for the Treatment of Oral Infections. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5234. [PMID: 39517510 PMCID: PMC11547214 DOI: 10.3390/ma17215234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study explores for the first time the impact of chitosan (CS) with varying molecular weights (MW), orange peel extract concentration, and hydroxypropyl methylcellulose (HPMC) content on the formulation of buccal tablets for treating oral infections. Utilizing a statistical design of experiments (DoE), nine different formulations were evaluated for mechanical properties, dissolution behavior, mucoadhesion, and biological activity. A formulation with high CS MW, 60% orange peel extract, and 8% HPMC, emerged as the optimal formulation, demonstrating superior tabletability, compressibility, and compactibility. Dissolution studies indicated that hesperidin release followed the Higuchi model, with higher extract content enhancing this phenomenon. Mucoadhesion improved with increased HPMC and CS concentrations, although higher extract content reduced bioadhesion. Biological assays showed that higher extract levels boosted antioxidant activity, while CS primarily contributed to anti-inflammatory effects. The optimized formulation exhibited broad antimicrobial activity against key oral pathogens, surpassing the effectiveness of the individual components. Principal component analysis (PCA) further confirmed the significant influence of extract content on tablet properties. These findings suggest that the optimized tablet formulation holds promise for effective buccal delivery in the treatment of oral infections, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (E.G.); (J.C.-P.)
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Medical Faculty, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznan, Poland;
| | - Ewa Garbiec
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (E.G.); (J.C.-P.)
| | | | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (E.G.); (J.C.-P.)
| |
Collapse
|
2
|
Paczkowska-Walendowska M, Ignacyk M, Miklaszewski A, Plech T, Karpiński TM, Kwiatek J, Swora-Cwynar E, Walendowski M, Cielecka-Piontek J. Electrospun Nanofibers with Pomegranate Peel Extract as a New Concept for Treating Oral Infections. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2558. [PMID: 38893822 PMCID: PMC11173823 DOI: 10.3390/ma17112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Pomegranate peel extract is known for its potent antibacterial, antiviral, antioxidant, anti-inflammatory, wound healing, and probiotic properties, leading to its use in treating oral infections. In the first stage of this work, for the first time, using the Design of Experiment (DoE) approach, pomegranate peel extract (70% methanol, temperature 70 °C, and three cycles per 90 min) was optimized and obtained, which showed optimal antioxidant and anti-inflammatory properties. The optimized extract showed antibacterial activity against oral pathogenic bacteria. The second part of this study focused on optimizing an electrospinning process for a combination of polycaprolactone (PCL) and polyvinylpyrrolidone (PVP) nanofibers loaded with the optimized pomegranate peel extract. The characterization of the nanofibers was confirmed by using SEM pictures, XRPD diffractograms, and IR-ATR spectra. The composition of the nanofibers can control the release; in the case of PVP-based nanofibers, immediate release was achieved within 30 min, while in the case of PCL/PVP, controlled release was completed within 24 h. Analysis of the effect of different scaffold compositions of the obtained electrofibers showed that those based on PCL/PVP had better wound healing potential. The proposed strategy to produce electrospun nanofibers with pomegranate peel extract is the first and innovative approach to better use the synergy of biological action of active compounds present in extracts in a patient-friendly pharmaceutical form, beneficial for treating oral infections.
Collapse
Affiliation(s)
- Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.I.); (J.C.-P.)
| | - Miłosz Ignacyk
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.I.); (J.C.-P.)
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwillowska 11, 20-080 Lublin, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Medical Faculty, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznan, Poland;
| | - Jakub Kwiatek
- Kwiatek Dental Clinic Sp. z o.o., Kordeckiego 22, 60-144 Poznan, Poland;
| | - Ewelina Swora-Cwynar
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| | | | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.I.); (J.C.-P.)
| |
Collapse
|
3
|
Paczkowska-Walendowska M, Miklaszewski A, Michniak-Kohn B, Cielecka-Piontek J. The Antioxidant Potential of Resveratrol from Red Vine Leaves Delivered in an Electrospun Nanofiber System. Antioxidants (Basel) 2023; 12:1777. [PMID: 37760078 PMCID: PMC10525167 DOI: 10.3390/antiox12091777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the wide pharmacological action of polyphenols, their usefulness is limited due to their low oral bioavailability, which is due to their low solubility and rapid first-pass metabolism. Red vine leaf extract is an herbal medicine containing several polyphenols, with resveratrol and polydatin as the main compounds exhibiting antioxidant and anti-inflammatory properties. In the first stage of the work, using the Design of Experiment (DoE) approach, the red vine leaf extract (50% methanol, temperature 70 °C, and three cycles per 60 min) was obtained, which showed optimal antioxidant and anti-inflammatory properties. In order to circumvent the above-described limitations and use innovative technology, electrospun nanofibers containing the red vine leaf extract, polyvinylpyrrolidone (PVP), and hydroxypropyl-β-cyclodextrin (HPβCD) were first developed. The optimization of the process involved the time of system mixing prior to electrospinning, the mixture flow rate, and the rotation speed of the collector. Dissolution studies of nanofibers showed improved resveratrol release from the nanofibers (over five-fold). Additionally, a PAMPA-GIT assay confirmed significantly better buccal penetration of resveratrol from this nanofiber combination (over ten-fold). The proposed strategy for electrospun nanofibers with the red vine leaf extract is an innovative approach to better use the synergy of the biological action of active compounds present in extracts that are beneficial for the development of nutraceuticals.
Collapse
Affiliation(s)
| | - Andrzej Miklaszewski
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Bożena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, Piscataway, NJ 08899, USA;
- Center for Dermal Research, Rutgers—The State University of New Jersey, Piscataway, NJ 08899, USA
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
4
|
Paczkowska-Walendowska M, Tajber L, Miklaszewski A, Cielecka-Piontek J. Hot Melt Extrusion for Improving the Physicochemical Properties of Polydatin Derived from Polygoni cuspidati Extract; A Solution Recommended for Buccal Applications. Pharmaceuticals (Basel) 2023; 16:1226. [PMID: 37765035 PMCID: PMC10535885 DOI: 10.3390/ph16091226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Three different types of solid dispersions based on polyvinyl polymers and related copolymers (Kollidon® VA64, Soluplus® and Kollicoat IR®) comprising polydatin-rich Polygoni cuspidati extract were prepared by hot melt extrusion. The systems were characterized using X-ray powder diffraction, infrared spectroscopy as well as by polydatin release and in vitro permeability. Mucoadhesive tablets were prepared from the extrudates based on Kollidon® VA64 and Soluplus® to obtain a suitable pharmaceutical form, where (hydroxypropyl)methyl cellulose was added as a mucoadhesive agent. The tablets were evaluated in terms of the kinetics of polydatin release as well as their mucoadhesive properties. The best tabletability properties, polydatin release profile and adequate mucoadhesive properties were obtained by the formulation containing the Kollidon® VA64-based extrudate, which makes it an excellent prototype for enhancing the release of poorly water-soluble compounds.
Collapse
Affiliation(s)
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, D02 PN40 Dublin, Ireland
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
5
|
Paczkowska-Walendowska M, Miklaszewski A, Cielecka-Piontek J. Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers. Int J Mol Sci 2023; 24:ijms24097963. [PMID: 37175671 PMCID: PMC10178203 DOI: 10.3390/ijms24097963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Orange peel, which is a rich source of polyphenolic compounds, including hesperidin, is produced as waste in production. Therefore, optimization of the extraction of hesperidin was performed to obtain its highest content. The influence of process parameters such as the kind of extraction mixture, its temperature and the number of repetitions of the cycles on hesperidin content, the total content of phenolic compounds and antioxidant (DPPH scavenging assay) as well as anti-inflammation activities (inhibition of hyaluronidase activity) was checked. Methanol and temperature were key parameters determining the efficiency of extraction in terms of the possibility of extracting compounds with the highest biological activity. The optimal parameters of the orange peel extraction process were 70% of methanol in the extraction mixture, a temperature of 70 °C and 4 cycles per 20 min. The second part of the work focuses on developing electrospinning technology to synthesize nanofibers of polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HPβCD) loaded with hesperidin-rich orange peel extract. This is a response to the circumvention of restrictions in the use of hesperidin due to its poor bioavailability resulting from low solubility and permeability. Dissolution studies showed improved hesperidin solubility (over eight-fold), while the PAMPA-GIT assay confirmed significantly better transmucosal penetration (over nine-fold). A DPPH scavenging assay of antioxidant activity as well as inhibition of hyaluronidase to express anti-inflammation activity was established for hesperidin in prepared electrospun nanofibers, especially those based on HPβCD and PVP. Thus, hesperidin-rich orange peel nanofibers may have potential buccal applications to induce improved systemic effects with pro-health biological activity.
Collapse
Affiliation(s)
| | - Andrzej Miklaszewski
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
6
|
Paczkowska-Walendowska M, Szymanowska D, Cielecka-Piontek J. Mechanochemical Properties of Mucoadhesive Tablets Based on PVP/HPβCD Electrospun Nanofibers as Local Delivery of Polygoni cuspidati Extract for Treating Oral Infections. Pharmaceuticals (Basel) 2023; 16:ph16040579. [PMID: 37111336 PMCID: PMC10145533 DOI: 10.3390/ph16040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the ability of PVP/HPβCD-based electrospun nanofibers to enhance the dissolution rate of poorly soluble polydatin and resveratrol, the main active components of Polygoni cuspidati extract. To make a solid unit dosage form that would be easier to administer, extract-loaded nanofibers were ground. SEM examination was used to analyze the nanostructure of the fibers, and the results of the cross-section of the tablets showed that they had maintained their fibrous structure. The release of the active compounds (polydatin and resveratrol) in the mucoadhesive tablets was complete and prolonged in time. Additionally, the possibility of staying on the mucosa for a prolonged time has also been proven for both tablets from PVP/HPβCD-based nanofibers and powder. The appropriate physicochemical properties of the tablets, along with the proven antioxidant, anti-inflammatory, and antibacterial properties of P. cuspidati extract, highlight the particular benefits of the mucoadhesive formulation for use as a drug delivery system for periodontal diseases.
Collapse
Affiliation(s)
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
7
|
Hot Melt Extrusion as an Effective Process in the Development of Mucoadhesive Tablets Containing Scutellariae baicalensis radix Extract and Chitosan Dedicated to the Treatment of Oral Infections. Int J Mol Sci 2023; 24:ijms24065834. [PMID: 36982908 PMCID: PMC10054152 DOI: 10.3390/ijms24065834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Hot Melt Extrusion (HME) technology was developed to obtain blends containing lyophilized Scutellariae baicalensis root extract and chitosan in order to improve the rheological properties of the obtained blends, including tableting and compressibility properties. (Hydroxypropyl)methyl cellulose (HPMC) in 3 different ratios was used as amorphous matrix formers. The systems were characterized using X-ray powder diffraction (PXRD), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), and in vitro release, permeability, and microbiological activity studies. Then, the extrudates were used to prepare tablets in order to give them the appropriate pharmaceutical form. HPMC-based systems released baicalin more slowly, resulting in delayed peaks in the acceptor fluid. This behavior can be explained by the fact that HPMC swells significantly, and the dissolved substance must have diffused through the polymer network before being released. The best tabletability properties are provided by the formulation containing the extrudate with lyophilized extract HPMC 50:50 w/w. These tablets offer a valuable baicalin release profile while maintaining good mucoadhesive properties that condition the tablet’s retention in the application site and the effectiveness of therapy.
Collapse
|
8
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
9
|
Assisted Extraction with Cyclodextrins as a Way of Improving the Antidiabetic Activity of Actinidia Leaves. Pharmaceutics 2022; 14:pharmaceutics14112473. [PMID: 36432664 PMCID: PMC9695090 DOI: 10.3390/pharmaceutics14112473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Five varieties of Actinidia leaves (Geneva, Jumbo, Ken's Red, Kijivska Hibridna, and Sentyabraskaya) were analyzed. The profiles of active compounds were determined, namely quercetin, rutin, epicatechin, chlorogenic acid, and kaempferol, in the raw material. Suspecting that the raw material might prove important in the treatment of diabetes, the authors assessed the antioxidant activity and the ability to inhibit enzymes responsible for the development of diabetes (α-glucosidase and α-amylase). As a result of the conducted analysis, the Ken's Red variety was indicated as having the highest biological activity (DPPH IC50 = 0.332 ± 0.048; FRAP IC0.5 = 0.064 ± 0.005; α-glucosidase inhibition IC50 = 0.098 ± 0.007; α-amylase inhibition IC50 = 0.083 ± 0.004). In order to increase the efficiency of the extraction of active compounds from Ken's Red variety leaves, cyclodextrins (α-CD, β-CD, and γ-CD) were used as extraction process enhancers. The obtained results showed a significant increase in the contents of extracted active compounds. In addition, the type of CD used enhanced the extraction of selected compounds (quercetin, kaempferol, rutin, chlorogenic acid, and epicatechin. This study shows that the application of cyclodextrin-based extraction significantly improved the leaf activity of the Ken's Red variety (DPPH IC50 = 0.160 ± 0.019; FRAP IC0.5 = 0.008 ± 0.001; α-glucosidase inhibition IC50 = 0.040 ± 0.002; α-amylase inhibition IC50 = 0.012 ± 0.003).
Collapse
|
10
|
Paczkowska-Walendowska M, Cielecka-Piontek J. Chitosan as a Functional Carrier for the Local Delivery Anti-Inflammatory Systems Containing Scutellariae baicalensis radix Extract. Pharmaceutics 2022; 14:2148. [PMID: 36297583 PMCID: PMC9611887 DOI: 10.3390/pharmaceutics14102148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
The aim of the study was to establish the influence of chitosan on the preparation of systems containing Scutellariae baicalensis radix extract and to demonstrate the potential of anti-inflammatory action for the treatment of periodontitis. In the first stage, the impact of the variables (extraction mixture composition, temperature, and the number of extraction cycles) on the extracted samples' biological characteristics was analyzed using the Design of Experiments (DoE) approach. The best conditions for baicalin, baicalein, and wogonin extraction from Scutellariae baicalensis radix were 80% methanol in the extraction mixture, 70 °C, and 4 cycles per 60 min. The DoE approach can be used to choose the best chitosan system parameters with equal success. An increase in the deacetylation degree of chitosan used in the system improved the potential for reducing free radicals and inhibiting the hyaluronidase enzyme. Also, increasing the degree of chitosan deacetylation results in increased resistance of the carrier to biodegradation and an extended baicalin release profile, which is also associated with an increase in the viscosity of the chitosan-based system. In total, the system of a freeze-dried extract with chitosan 90/500 in the ratio of 2:1 (system S9) turns out to be the one with the best physicochemical (high percentage of baicalin release and the highest viscosity conditioning the prolonged stay at the site of administration) and biological properties (the highest antioxidant and anti-inflammatory activities), resulting in the highest potential for use in the treatment of oral inflammatory diseases.
Collapse
|
11
|
Bioactive Molecules from Plants: Discovery and Pharmaceutical Applications. Pharmaceutics 2022; 14:pharmaceutics14102116. [PMID: 36297551 PMCID: PMC9608623 DOI: 10.3390/pharmaceutics14102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
|
12
|
Is It Possible to Improve the Bioavailability of Resveratrol and Polydatin Derived from Polygoni cuspidati Radix as a Result of Preparing Electrospun Nanofibers Based on Polyvinylpyrrolidone/Cyclodextrin? Nutrients 2022; 14:nu14193897. [PMID: 36235550 PMCID: PMC9572329 DOI: 10.3390/nu14193897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
The low bioavailability of resveratrol and polydatin obtained from Polygoni cuspidati extract limits the application of their pro-health properties. While nanofibers have attracted increasing attention in nutrition delivery due to their special properties, including an increase in the dissolution and permeability, which affects the bioavailability. Therefore, it is justified to obtain nanofibers from Polygoni cuspidati extract, which showed antioxidant and anti-inflammatory properties as a result of a presence of stilbene analogs in the Polygoni cuspidati extract (especially resveratrol and polydatin). In the first stage of the work, using the Design of Experiment (DoE) approach, the Polygoni cuspidati extract (70% of methanol, temperature 70 °C and 4 cycles) was obtained, which showed the best antioxidant and anti-inflammatory properties. Using the Polygoni cuspidati extract as a substrate, nanofibers were obtained by electrospinning. The identification of nanofibers was confirmed on the basis of the analysis of changes in XRPD diffractograms, SEM picture and FTIR-ATR spectra. Obtaining nanofibers from the Polygoni cuspidati extract significantly improved the solubility of resveratrol and polydatin (approx. 6-fold comparing to pure substance). As a consequence, the penetration coefficients of both tested resveratrol and polydatin also increased. The proposed strategy for the preparation of nanofibers from the Polygoni cuspidati extract is an innovative approach to better use the synergy of biological action of active compounds present in extracts. It is especially during the development of nutraceuticals based on the use of selected stilbenes.
Collapse
|
13
|
Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics 2021; 13:pharmaceutics13122185. [PMID: 34959467 PMCID: PMC8705740 DOI: 10.3390/pharmaceutics13122185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are one of the most significant challenges in dental health. It is estimated that only a few percent of the worldwide population have entirely healthy teeth, and according to WHO, oral diseases may affect up to 3.5 billion people worldwide. One of the most serious oral diseases is periodontitis, an inflammatory disease affecting periodontal tissues, caused by pathogenic bacteria and environmental factors such as the ageing population, abuse of tobacco products, and lack of adequate oral hygiene due low public awareness. Plant materials are widely and successfully used in the management of many conditions, including periodontitis. Plant materials for periodontitis exhibit antibacterial, anti-inflammatory, antioxidant activities and affect the periodontium structure. Numerous studies demonstrate the advantages of phytotherapy for periodontitis relief and indicate the usefulness of Baikal skullcap root, Pomegranate fruit peel and root cortex, Tea leaves, Chamomile flowers, Magnolia bark, Blackberry leaves and fruits, Cranberry fruits and Lippia sidoides essential oil. This review aims to analyze the use and applicability of selected plant materials in periodontitis management since it is of paramount importance to evaluate the evidence of the traditionally used plant materials in light of continuously growing interest in phytotherapy and its adjuvant role in the treatment of periodontitis.
Collapse
|