1
|
Czarnowski M, Wnorowska U, Łuckiewicz M, Dargiewicz E, Spałek J, Okła S, Sawczuk B, Savage PB, Bucki R, Piktel E. Natural Antimicrobial Peptides and Their Synthetic Analogues for Effective Oral Microflora Control and Oral Infection Treatment-The Role of Ceragenins in the Development of New Therapeutic Methods. Pharmaceuticals (Basel) 2024; 17:1725. [PMID: 39770567 PMCID: PMC11678171 DOI: 10.3390/ph17121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/03/2025] Open
Abstract
Oral diseases, both acute and chronic, of infectious or non-infectious etiology, represent some of the most serious medical problems in dentistry. Data from the literature increasingly indicate that changes in the oral microbiome, and therefore, the overgrowing of pathological microflora, lead to a variety of oral-localized medical conditions such as caries, gingivitis, and periodontitis. In recent years, compelling research has been devoted to the use of natural antimicrobial peptides as therapeutic agents in the possible treatment of oral diseases. This review focuses on the potential of ceragenins (CSAs), which are lipid analogs of natural antimicrobial peptides, as molecules for the development of new methods for the prevention and treatment of oral diseases. Studies to date indicate that ceragenins, with their spectrum of multidirectional biological activities, including antimicrobial, tissue regeneration-stimulating, anti-inflammatory, and immunomodulatory properties, are strong candidates for further development of oral formulations. However, many of the beneficial properties of ceragenins require confirmation in experimental conditions reproducing the oral environment to fully determine their application potential. Their transition to practical use also requires more advanced testing of these molecules in clinical trials, which have only been conducted in limited numbers to date.
Collapse
Affiliation(s)
- Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.C.); (U.W.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.C.); (U.W.)
| | - Milena Łuckiewicz
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Ewelina Dargiewicz
- Department of Orthodontics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Jakub Spałek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland; (J.S.); (S.O.)
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland; (J.S.); (S.O.)
| | - Beata Sawczuk
- Department of Prosthodontics, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Paul B. Savage
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.C.); (U.W.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland;
| |
Collapse
|
2
|
Karasiński M, Wnorowska U, Daniluk T, Deptuła P, Łuckiewicz M, Paprocka P, Durnaś B, Skłodowski K, Sawczuk B, Savage PB, Piktel E, Bucki R. Investigating the Effectiveness of Ceragenins against Acinetobacter baumannii to Develop New Antimicrobial and Anti-Adhesive Strategies. Int J Mol Sci 2024; 25:7036. [PMID: 39000144 PMCID: PMC11241064 DOI: 10.3390/ijms25137036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
A growing body of experimental data indicates that ceragenins (CSAs), which mimic the physicochemical properties of the host's cationic antimicrobial peptide, hold promise for the development of a new group of broad-spectrum antimicrobials. Here, using a set of in vivo experiments, we assessed the potential of ceragenins in the eradication of an important etiological agent of nosocomial infections, Acinetobacter baumannii. Assessment of the bactericidal effect of ceragenins CSA-13, CSA-44, and CSA-131 on clinical isolates of A. baumannii (n = 65) and their effectiveness against bacterial cells embedded in the biofilm matrix after biofilm growth on abiotic surfaces showed a strong bactericidal effect of the tested molecules regardless of bacterial growth pattern. AFM assessment of bacterial cell topography, bacterial cell stiffness, and adhesion showed significant membrane breakdown and rheological changes, indicating the ability of ceragenins to target surface structures of A. baumannii cells. In the cell culture of A549 lung epithelial cells, ceragenin CSA-13 had the ability to inhibit bacterial adhesion to host cells, suggesting that it interferes with the mechanism of bacterial cell invasion. These findings highlight the potential of ceragenins as therapeutic agents in the development of antimicrobial strategies against bacterial infections caused by A. baumannii.
Collapse
Affiliation(s)
- Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Białystok, 15-222 Białystok, Poland; (P.D.); (M.Ł.); (E.P.)
| | - Milena Łuckiewicz
- Independent Laboratory of Nanomedicine, Medical University of Białystok, 15-222 Białystok, Poland; (P.D.); (M.Ł.); (E.P.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (P.P.); (B.D.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (P.P.); (B.D.)
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Beata Sawczuk
- Department of Prosthodontics, Medical University of Bialystok, Sklodowskiej 24a, 15-276 Bialystok, Poland;
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, 15-222 Białystok, Poland; (P.D.); (M.Ł.); (E.P.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| |
Collapse
|
3
|
Muszalska-Kolos I, Dwiecki PM. Searching for Conjugates as New Structures for Antifungal Therapies. J Med Chem 2024; 67:4298-4321. [PMID: 38470824 DOI: 10.1021/acs.jmedchem.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The progressive increase in fungal infections and the decrease in the effectiveness of current therapy explain research on new drugs. The synthesis of compounds with proven antifungal activity, favorable physicochemical and pharmacokinetic properties affecting their pharmaceutical availability and bioavailability, and limiting or eliminating side effects has become the goal of many studies. The publication describes the directions of searching for new compounds with antifungal activity, focusing on conjugates. The described modifications include, among others, azoles or amphotericin B in combination with fatty acids, polysaccharides, proteins, and synthetic polymers. The benefits of these combinations in terms of activity, mechanism of action, and bioavailability were indicated. The possibilities of creating or using nanoparticles, "umbrella" conjugates, siderophores (iron-chelating compounds), and monoclonal antibodies were also presented. Taking into account the role of vaccinations in prevention, the scope of research related to developing a vaccine protecting against fungal infections was also indicated.
Collapse
Affiliation(s)
- Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Mariusz Dwiecki
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Pharmaceutical Company "Ziołolek" Sp. z o.o., Starolecka 189, 61-341 Poznan, Poland
| |
Collapse
|
4
|
Karasiński M, Wnorowska U, Durnaś B, Król G, Daniluk T, Skłodowski K, Głuszek K, Piktel E, Okła S, Bucki R. Ceragenins and Ceragenin-Based Core-Shell Nanosystems as New Antibacterial Agents against Gram-Negative Rods Causing Nosocomial Infections. Pathogens 2023; 12:1346. [PMID: 38003809 PMCID: PMC10674730 DOI: 10.3390/pathogens12111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The growing number of infections caused by multidrug-resistant bacterial strains, limited treatment options, multi-species infections, high toxicity of the antibiotics used, and an increase in treatment costs are major challenges for modern medicine. To remedy this, scientists are looking for new antibiotics and treatment methods that will effectively eradicate bacteria while continually developing different resistance mechanisms. Ceragenins are a new group of antimicrobial agents synthesized based on molecular patterns that define the mechanism of antibacterial action of natural antibacterial peptides and steroid-polyamine conjugates such as squalamine. Since ceragenins have a broad spectrum of antimicrobial activity, with little recorded ability of bacteria to develop a resistance mechanism that can bridge their mechanism of action, there are high hopes that this group of molecules can give rise to a new family of drugs effective against bacteria resistant to currently used antibiotics. Experimental data suggests that core-shell nanosystems, in which ceragenins are presented to bacterial cells on metallic nanoparticles, may increase their antimicrobial potential and reduce their toxicity. However, studies should be conducted, among others, to assess potential long-term cytotoxicity and in vivo studies to confirm their activity and stability in animal models. Here, we summarized the current knowledge on ceragenins and ceragenin-containing nanoantibiotics as potential new tools against emerging Gram-negative rods associated with nosocomial infections.
Collapse
Affiliation(s)
- Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Katarzyna Głuszek
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Sławomir Okła
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| |
Collapse
|
5
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
6
|
Ceragenin CSA-13 displays high antibacterial efficiency in a mouse model of urinary tract infection. Sci Rep 2022; 12:19164. [PMID: 36357517 PMCID: PMC9649698 DOI: 10.1038/s41598-022-23281-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Ceragenins (CSAs) are synthetic, lipid-based molecules that display activities of natural antimicrobial peptides. Previous studies demonstrated their high in vitro activity against pathogens causing urinary tract infections (UTIs), but their efficiency in vivo was not explored to date. In this study, we aimed to investigate the bactericidal efficiency of ceragenins against E. coli (Xen14 and clinical UPEC strains) isolates both in vitro and in vivo, as well to explore CSA-13 biodistribution and ability to modulate nanomechanical alterations of infected tissues using animal model of UTI. CSA-44, CSA-131 and particularly CSA-13 displayed potent bactericidal effect against tested E. coli strains, and this effect was mediated by induction of oxidative stress. Biodistribution studies indicated that CSA-13 accumulates in kidneys and liver and is eliminated with urine and bile acid. We also observed that ceragenin CSA-13 reverses infection-induced alterations in mechanical properties of mouse bladders tissue, which confirms the preventive role of CSA-13 against bacteria-induced tissue damage and potentially promote the restoration of microenvironment with biophysical features unfavorable for bacterial growth and spreading. These data justify the further work on employment of CSA-13 in the treatment of urinary tract infections.
Collapse
|
7
|
Bactericidal Activity of Ceragenin in Combination with Ceftazidime, Levofloxacin, Co-Trimoxazole, and Colistin against the Opportunistic Pathogen Stenotrophomonas maltophilia. Pathogens 2022; 11:pathogens11060621. [PMID: 35745475 PMCID: PMC9227598 DOI: 10.3390/pathogens11060621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Stenotrophomonas maltophilia (S. maltophilia) is an emerging opportunistic Gram-negative rod causing nosocomial infections predominantly in immunocompromised patients. Due to its broad intrinsic resistance to antibiotics, including carbapenems and the ability to form a biofilm, it is difficult to eradicate. Methods: In this study, the benefit of combined administration (potential synergism) and anti-biofilm activity of ceragenins: CSA-13, CSA-44, and CSA-131 (synthetic mimics of natural antimicrobial peptides) with ceftazidime, levofloxacin, co-trimoxazole and colistin against clinical strains of S. maltophilia were determined using MIC/MBC (minimum inhibitory concentration/minimum bactericidal concentration), killing assays and CV staining. Results: Obtained data indicate that the ceragenins exhibit strong activity against the tested strains of S. maltophilia grown in planktonic culture and as stationary biofilms. Moreover, with some strains, the synergy of ceragenins with conventional antibiotics was observed Conclusion: Our data suggest that ceragenins are promising agents for future development of new methods for treatment of infections caused by S. maltophilia, along with its potential use in combination with conventional antibiotics.
Collapse
|