1
|
David C, de Souza JF, Silva AF, Grazioli G, Barboza AS, Lund RG, Fajardo AR, Moraes RR. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:14. [PMID: 38353746 PMCID: PMC10866797 DOI: 10.1007/s10856-023-06773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
In this study, poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with cannabidiol (CBD) were synthesized (PLGA@CBD microparticles) and embedded up to 10 wt% in a chondroitin sulfate/polyvinyl alcohol hydrogel matrix. In vitro chemical, physical, and biological assays were carried out to validate the potential use of the modified hydrogels as biomaterials. The microparticles had spherical morphology and a narrow range of size distribution. CBD encapsulation efficiency was around 52%, loading was approximately 50%. Microparticle addition to the hydrogels caused minor changes in their morphology, FTIR and thermal analyses confirmed these changes. Swelling degree and total porosity were reduced in the presence of microparticles, but similar hydrophilic and degradation in phosphate buffer solution behaviors were observed by all hydrogels. Rupture force and maximum strain at rupture were higher in the modified hydrogels, whereas modulus of elasticity was similar across all materials. Viability of primary human dental pulp cells up to 21 days was generally not influenced by the addition of PLGA@CBD microparticles. The control hydrogel showed no antimicrobial activity against Staphylococcus aureus, whereas hydrogels with 5% and 10% PLGA@CBD microparticles showed inhibition zones. In conclusion, the PLGA@CBD microparticles were fabricated and successfully embedded in a hydrogel matrix. Despite the hydrophobic nature of CBD, the physicochemical and morphological properties were generally similar for the hydrogels with and without the CBD-loaded microparticles. The data reported in this study suggested that this original biomaterial loaded with CBD oil has characteristics that could enable it to be used as a scaffold for tissue/cellular regeneration.
Collapse
Affiliation(s)
- Carla David
- Biopathological Research Group, Faculty of Dentistry (GIBFO), University of the Andes, Mérida, Venezuela.
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Jaqueline F de Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials-LaCoPol, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Guillermo Grazioli
- Department of Dental Materials, Universidad de la República, Montevideo, Uruguay
| | - Andressa S Barboza
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael G Lund
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials-LaCoPol, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
2
|
Singh V, Vihal S, Rana R, Rathore C. Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:247-261. [PMID: 39356097 DOI: 10.2174/0126673878300347240718100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 10/03/2024]
Abstract
Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.
Collapse
Affiliation(s)
- Varun Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, 160036, India
| |
Collapse
|
3
|
Shreiber-Livne I, Sulimani L, Shapira A, Procaccia S, Meiri D, Sosnik A. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol. Drug Deliv Transl Res 2023; 13:3192-3203. [PMID: 37341881 DOI: 10.1007/s13346-023-01380-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Cannabidiol (CBD), a non-psychoactive constituent of Cannabis, has proven neuroprotective, anti-inflammatory and antioxidant properties though his therapeutic use, especially by the oral route, is still challenged by the poor aqueous solubility that results in low oral bioavailability. In this work, we investigate the encapsulation of CBD within nanoparticles of a highly hydrophobic poly(ethylene glycol)-b-poly(epsilon-caprolactone) block copolymer produced by a simple and reproducible nanoprecipitation method. The encapsulation efficiency is ~ 100% and the CBD loading 11% w/w (high performance liquid chromatography). CBD-loaded nanoparticles show a monomodal size distribution with sizes of up to 100 nm (dynamic light scattering), a spherical morphology, and the absence of CBD crystals (high resolution-scanning electron microscopy and cryogenic-transmission electron microscopy) which is in line with a very efficient nanoencapsulation. Then, the CBD release profile from the nanoparticles is assessed under gastric- and intestine-like conditions. At pH 1.2, only 10% of the payload is released after 1 h. Conversely, at pH 6.8, a release of 80% is recorded after 2 h. Finally, the oral pharmacokinetics is investigated in rats and compared to a free CBD suspension. CBD-loaded nanoparticles lead to a statistically significant ~ 20-fold increase of the maximum drug concentration in plasma (Cmax) and a shortening of the time to the Cmax (tmax) from 4 to 0.3 h, indicating a more complete and faster absorption than in free form. Moreover, the area-under-the-curve (AUC), a measure of oral bioavailability, increased by 14 times. Overall results highlight the promise of this simple, reproducible, and scalable nanotechnology strategy to improve the oral performance of CBD with respect to common oily formulations and/or lipid-based drug delivery systems associated with systemic adverse effects.
Collapse
Affiliation(s)
- Inbar Shreiber-Livne
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, 320003, Israel
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- CannaSoul Analytics, Caesarea, 3099109, Israel
| | - Anna Shapira
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shiri Procaccia
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - David Meiri
- Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, 320003, Israel.
| |
Collapse
|
4
|
Chauhan A, Fitzhenry L, Serro AP. Recent Advances in Ophthalmic Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102075. [PMID: 36297511 PMCID: PMC9606937 DOI: 10.3390/pharmaceutics14102075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anuj Chauhan
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, South East Technological University, X91 K0EK Waterford, Ireland
| | - Ana Paula Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
5
|
Daniels R, Morato EO, Yassin OA, Mao J, Mutlu Z, Jain M, Valenti J, Cakmak M, Nair LS, Sotzing GA. Poly(cannabinoid)s: Hemp-Derived Biocompatible Thermoplastic Polyesters with Inherent Antioxidant Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42804-42811. [PMID: 36112124 DOI: 10.1021/acsami.2c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The legalization of hemp cultivation in the United States has caused the price of hemp-derived cannabinoids to decrease 10-fold within 2 years. Cannabidiol (CBD), one of many naturally occurring diols found in hemp, can be purified in high yield for low cost, making it an interesting candidate for polymer feedstock. In this study, two polyesters were synthesized from the condensation of either CBD or cannabigerol (CBG) with adipoyl chloride. Poly(CBD-Adipate) was cast into free-standing films and subjected to thermal, mechanical, and biological characterization. Poly(CBD-Adipate) films exhibited a lack of cytotoxicity toward adipose-derived stem cells while displaying an inherent antioxidant activity compared to poly(lactide) films. Additionally, this material was found to be semi-crystalline and able to be melt-processed into a plastic hemp leaf using a silicone baking mold.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Erick Orozco Morato
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Omer A Yassin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jiahao Mao
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zeynep Mutlu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Mayank Jain
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Joseph Valenti
- College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mukerrem Cakmak
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Lakshmi S Nair
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, Department of Material Science and Engineering, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Gregory A Sotzing
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities. Molecules 2022; 27:molecules27186070. [PMID: 36144803 PMCID: PMC9502382 DOI: 10.3390/molecules27186070] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
In recent years, the interest in cannabidiol (CBD) has increased because of the lack of psychoactive properties. However, CBD has low solubility and bioavailability, variable pharmacokinetics profiles, poor stability, and a pronounced presystemic metabolism. CBD nanoformulations include nanosuspensions, polymeric micelles and nanoparticles, hybrid nanoparticles jelled in cross-linked chitosan, and numerous nanosized lipid formulations, including nanostructured lipid carriers, vesicles, SNEEDS, nanoemulsions, and microemulsions. Nanoformulations have resulted in high CBD solubility, encapsulation efficiency, and stability, and sustained CBD release. Some studies assessed the increased Cmax and AUC and decreased Tmax. A rational evaluation of the studies reported in this review evidences how some of them are very preliminary and should be completed before performing clinical trials. Almost all the developed nanoparticles have simple architectures, are well-known and safe nanocarriers, or are even simple nanosuspensions. In addition, the conventional routes of administration are generally investigated. As a consequence, many of these studies are almost ready for forthcoming clinical translations. Some of the developed nanosystems are very promising for a plethora of therapeutic opportunities because of the versatility in terms of the release, the crossing of physiological barriers, and the number of possible routes of administration.
Collapse
|
7
|
Fu J, Zhang K, Lu L, Li M, Han M, Guo Y, Wang X. Improved Therapeutic Efficacy of CBD with Good Tolerance in the Treatment of Breast Cancer through Nanoencapsulation and in Combination with 20(S)-Protopanaxadiol (PPD). Pharmaceutics 2022; 14:pharmaceutics14081533. [PMID: 35893789 PMCID: PMC9332327 DOI: 10.3390/pharmaceutics14081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cannabidiol (CBD), a nonpsychoactive major component derived from Cannabis sativa, widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, especially tumor cachexia, thus it is very promising as an anti-tumor drug with unique advantages. 20(S)-Protopanaxadiol (PPD) derived from the best-known tonic Chinese herbal medicine Ginseng was designed to be co-loaded with CBD into liposomes to examine their synergistic tumor-inhibitory effect. The CBD-PPD co-loading liposomes (CP-liposomes) presented a mean particle size of 138.8 nm. Further glycosyl-modified CP-liposomes (GMCP-liposomes) were prepared by the incorporation of n-Dodecyl β-D-maltoside (Mal) into the liposomal bilayer with glucose residue anchored on the surface to act as a ligand targeting the GLUT1 receptor highly expressed on tumor cells. In vivo studies on murine breast tumor (4T1 cells)-bearing BALB/c mice demonstrated good dose dependent anti-tumor efficacy of CP-liposomes. A high tumor inhibition rate (TIR) of 82.2% was achieved with good tolerance. However, glycosylation modification failed to significantly enhance TIR of CP-liposomes. In summary, combined therapy with PPD proved to be a promising strategy for CBD to be developed into a novel antitumor drug, with characteristics of effectiveness, good tolerance, and the potential to overcome tumor cachexia.
Collapse
Affiliation(s)
- Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Kunfeng Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
- Correspondence:
| |
Collapse
|
8
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
9
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
10
|
Cannabidiol Antiproliferative Effect in Triple-Negative Breast Cancer MDA-MB-231 Cells Is Modulated by Its Physical State and by IGF-1. Int J Mol Sci 2022; 23:ijms23137145. [PMID: 35806150 PMCID: PMC9266539 DOI: 10.3390/ijms23137145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has been discussed for its safety and efficacy in cancer treatments. For this reason, we have inquired into its use on triple-negative human breast cancer. Analyzing the biological effects of CBD on MDA-MB-231, we have demonstrated that both CBD dosage and serum concentrations in the culture medium influence its outcomes; furthermore, light scattering studies demonstrated that serum impacts the CBD aggregation state by acting as a surfactant agent. Pharmacological studies on CBD in combination with chemotherapeutic agents reveal that CBD possesses a protective action against the cytotoxic effect exerted by cisplatin on MDA-MB-231 grown in standard conditions. Furthermore, in a low serum condition (0.5%), starting from a threshold concentration (5 µM), CBD forms aggregates, exerts cytostatic antiproliferative outcomes, and promotes cell cycle arrest activating autophagy. At doses above the threshold, CBD exerts a highly cytotoxic effect inducing bubbling cell death. Finally, IGF-1 and EGF antagonize the antiproliferative effect of CBD protecting cells from harmful consequences of CBD aggregates. In conclusion, CBD effect is strongly associated with the physical state and concentration that reaches the treated cells, parameters not taken into account in most of the research papers.
Collapse
|