1
|
Abdel-Megeed RM, Ghanem HZ, Kadry MO. Alleviation of doxorubicin adverse effects via loading into various drug-delivery systems: a comparative study. Ther Deliv 2024; 15:413-426. [PMID: 38639647 DOI: 10.4155/tde-2023-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: Drug resistance is still a significant barrier to effective hepatocellular carcinoma therapy. Address the issue of doxorubicin resistance and inter-receptor crosstalk various doxorubicin formulations were investigated. Methods: Hepatocellular carcinoma was carried out using 3-methylechloroanthrene. Animals were then treated with doxorubicin, liposomal doxorubicin, titanium-loaded doxorubicin (TiO2-Dox), lactoferrin-doxorubicin and PEGylated doxorubicin. Biochemical and molecular analyses were assessed. Results: Results have declared a significant alternation of both sodium and potassium concentrations upon 3-methylechloroanthrene administration. Arginase-I and α-L-Fucodinase tumor biomarkers were significantly elevated. C-myc, Hprt-1 and EGFR gene expression were over-expressed. Treatment with the aforementioned treatment regimens significantly modulated all measured parameters. Conclusion: TiO2-Dox, doxorubicin-lactoferrin and PEGylated doxorubicin could be a promising regimen in hepatocellular carcinoma and overcoming the problem of drug resistance.
Collapse
Affiliation(s)
- Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St, Dokki, Cairo, 12622, Egypt
| | - Hassan Z Ghanem
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St, Dokki, Cairo, 12622, Egypt
| | - Mai O Kadry
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
3
|
Tang H, Cao C, Zhang G, Sun Z. Impact of particle size of multivesicular liposomes on the embolic and therapeutic effects in rabbit VX2 liver tumor. Drug Deliv 2023; 30:1-16. [PMID: 36644796 PMCID: PMC9987747 DOI: 10.1080/10717544.2022.2157519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is usually considered more efficacious in the local treatment of parenchyma-sparing hepatocellular carcinoma (HCC). At present, embolic agents commonly used in TACE, include DC pellets, Hepasphere, Lipiodol, etc. Except that iodine oil is a viscous fluid embolic agent, other solid microsphere particles used clinically range from 70 to 700 µm, among which 100 to 300 µm is the most commonly used. With the technology development of micro-invasive interventional therapy, the specific distal embolization through TACE to occlude tumor arterial blood supply in patients with HCC is also required more accurately. Effective terminal embolization is considered to be a preferred option for TACE therapy due to significantly improving the survival rate of patients and preserving liver function. In this article, we prepared the multifunctional multivesicular liposomes (IVO-DOX-MVLs) (<100 µm) that can simultaneously encapsulate ioversol and doxorubicin based on the high-phase transition temperature (Tm) lipid ingredients, and evaluated its local artery embolization and therapeutic effect in rabbit VX-2 tumor model. The influence of particle size on occlusion and therapeutic effect of MVLs on rabbit VX-2 liver tumor models were well evaluated, including the tumor volume change, tumor growth rate, and necrosis rate, which were evaluated by magnetic resonance (MR). MVL samples with average particle size distribution of 50-60 µm exhibited fewer off-target embolization. Through TACE, IVO-DOX-MVLs were directly transported to the tumor tissues, playing roles of embolization performance, CT imaging effect, and local tumor killing effect. The feasibility of MVLs as a multifunctional embolic agent in its clinical application can be further improved by optimization of lipid composition and preparation process.
Collapse
Affiliation(s)
- Hailing Tang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Changhui Cao
- Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Guangyuan Zhang
- Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Zhengkao Sun
- Department of Orthopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShangDong University, Qingdao, China
| |
Collapse
|
4
|
Lee J, Choi MK, Song IS. Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals (Basel) 2023; 16:802. [PMID: 37375753 PMCID: PMC10301446 DOI: 10.3390/ph16060802] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX), a widely used drug in cancer chemotherapy, induces cell death via multiple intracellular interactions, generating reactive oxygen species and DNA-adducted configurations that induce apoptosis, topoisomerase II inhibition, and histone eviction. Despite its wide therapeutic efficacy in solid tumors, DOX often induces drug resistance and cardiotoxicity. It shows limited intestinal absorption because of low paracellular permeability and P-glycoprotein (P-gp)-mediated efflux. We reviewed various parenteral DOX formulations, such as liposomes, polymeric micelles, polymeric nanoparticles, and polymer-drug conjugates, under clinical use or trials to increase its therapeutic efficacy. To improve the bioavailability of DOX in intravenous and oral cancer treatment, studies have proposed a pH- or redox-sensitive and receptor-targeted system for overcoming DOX resistance and increasing therapeutic efficacy without causing DOX-induced toxicity. Multifunctional formulations of DOX with mucoadhesiveness and increased intestinal permeability through tight-junction modulation and P-gp inhibition have also been used as orally bioavailable DOX in the preclinical stage. The increasing trends of developing oral formulations from intravenous formulations, the application of mucoadhesive technology, permeation-enhancing technology, and pharmacokinetic modulation with functional excipients might facilitate the further development of oral DOX.
Collapse
Affiliation(s)
- Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
5
|
Priya S, Desai VM, Singhvi G. Surface Modification of Lipid-Based Nanocarriers: A Potential Approach to Enhance Targeted Drug Delivery. ACS OMEGA 2023; 8:74-86. [PMID: 36643539 PMCID: PMC9835629 DOI: 10.1021/acsomega.2c05976] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 05/27/2023]
Abstract
Nanocarriers have the utmost significance for advancements in drug delivery and nanomedicine technology. They are classified as polymer-based nanocarriers, lipid-based nanocarriers, viral nanoparticles, or inorganic nanoparticles, depending on their constituent parts. Lipid-based nanocarrier systems have gained tremendous attention over the years because of their noteworthy properties like high drug-loading capacity, lower toxicity, better bioavailability and biocompatibility, stability in the gastrointestinal tract, controlled release, simpler scale-up, and validation process. Nanocarriers still have some disadvantages like poor drug penetration, limited drug encapsulation, and poor targeting. These disadvantages can be overcome by their surface modification. Surface-modified nanocarriers result in controlled release, enhanced penetration efficiency, and targeted medication delivery. In this review, the authors summarize the numerous lipid-based nanocarriers and their functionalization through various surface modifiers such as polymers, ligands, surfactants, and fatty acids. Recent examples of newly developing surface-modified lipid-based nanocarrier systems from the available literature, along with their applications, have been compiled in this work.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
6
|
Lopes LB, Apolinário AC, Salata GC, Malagó ID, Passos JS. Lipid Nanocarriers for Breast Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Megahed MA, El-Sawy HS, Reda AM, Abd-Allah FI, Abu Elyazid SK, Lila AE, Ismael HR, El-Say KM. Effect of nanovesicular surface-functionalization via chitosan and/or PEGylation on cytotoxicity of tamoxifen in induced-breast cancer model. Life Sci 2022; 307:120908. [PMID: 36028168 DOI: 10.1016/j.lfs.2022.120908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022]
Abstract
AIMS The effect of surface-modification of Tamoxifen (Tam)-loaded-niosomes on drug cytotoxicity and bio-distribution, via functionalization with chitosan and/or PEGylation, was investigated. MATERIALS AND METHODS Tam-loaded hybrid-nanocarriers (Tam-loaded niosomes, chitosomes, PEGylated niosomes, and PEGylated chitosomes) were formulated and characterized. KEY FINDINGS Chitosanization with/without PEGylation proved to selectively enhance Tam-release at the cancerous-acidic micromilieu. Cytotoxic activity study showed that Tam-loaded PEGylated niosomes had a lower IC50 value on MCF-7 cell line (0.39, 0.35, and 0.27 times) than Tam-loaded PEGylated chitosomes, Tam-loaded niosomes, and Tam-loaded chitosomes, respectively. Cell cycle analysis showed that PEGylation and/or Chitosanization significantly impact Tam efficiency in inducing apoptosis, with a preferential influence of PEGylation over chitosanization. The assay of Annexin-V/PI double staining revealed that chitosanized-nanocarriers had a significant role in increasing the incidence of apoptosis over necrosis. Besides, PEGylated-nanocarriers increased apoptosis, as well as total death and necrosis percentages more than what was shown from free Tam. Moreover, the average changes in both Bax/Bcl-2 ratio and Caspase 9 were best improved in cells treated by Tam-loaded PEGylated niosomes over all other formulations. The in-vivo study involving DMBA-induced-breast cancer rats revealed that PEGylation made the highest tumor-growth inhibition (84.9 %) and breast tumor selectivity, while chitosanization had a lower accumulation tendency in the blood (62.3 ng/ml) and liver tissues (103.67 ng/ml). The histopathological specimens from the group treated with Tam-loaded PEGylated niosomes showed the best improvement over other formulations. SIGNIFICANCE All these results concluded the crucial effect of both PEGylation and chitosan-functionalization of Tam-loaded niosomes in enhancing effectiveness, targetability, and safety.
Collapse
Affiliation(s)
- Mohamed A Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Egyptian Russian University, Cairo 11829, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Egyptian Russian University, Cairo 11829, Egypt
| | - Ahmed M Reda
- Department of Biochemistry, Egyptian Russian University, Cairo 11829, Egypt
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt; International Center for Bioavailability, Pharmaceutical and Clinical Research, Obour City 11828, Egypt
| | - Sherif K Abu Elyazid
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Ahmed E Lila
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Hatem R Ismael
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
9
|
Chen L, Lan J, Li Z, Zeng R, Wang Y, Zhen L, Jin H, Ding Y, Zhang T. A Novel Diosgenin-Based Liposome Delivery System Combined with Doxorubicin for Liver Cancer Therapy. Pharmaceutics 2022; 14:1685. [PMID: 36015311 PMCID: PMC9416271 DOI: 10.3390/pharmaceutics14081685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
As a malignant tumor, liver cancer is mainly treated with chemotherapy, while chemotherapeutic drugs, such as doxorubicin (DOX), may lead to toxicity, drug resistance and poor prognosis. The targeted delivery systems of combining natural products and chemotherapeutic drugs are useful to eliminate cancers with reduced toxicity and increased efficiency. In this study, a diosgenin-based liposome loaded with DOX (Dios-DOX-LP) was developed for synergistic treatment of liver cancer, in which Dios not only replaced cholesterol as the membrane regulator to keep stability of liposomes, but also became the chemotherapy adjuvant of DOX for synergistic treatment. Dios-DOX-LP was characterized by particle size (99.4 ± 6.2 nm), zeta potential (-33.3 ± 2.5 mV), and entrapment efficiency (DOX: 98.77 ± 2.04%, Dios: 87.75 ± 2.93%), which had a good stability and slow-release effect. Compared with commercial DOX liposome (CHOL-DOX-LP), Dios-DOX-LP had an improved anti-tumor effect in vitro and in vivo by inducing the apoptosis and inhibiting the proliferation of the tumor cell, which was 1.6 times better than CHOL-DOX-LP in cytotoxicity, and had 78% of the tumor inhibition rate on tumor-bearing nude mice. Dios-DOX-LP provided a novel idea to achieve synergistic tumor treatment using diosgenin as a liposome material.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lu Zhen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haojieyin Jin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
10
|
Alrumaihi F, Khan MA, Babiker AY, Alsaweed M, Azam F, Allemailem KS, Almatroudi AA, Ahamad SR, Alsugoor MH, Alharbi KN, Almansour NM, Khan A. Lipid-Based Nanoparticle Formulation of Diallyl Trisulfide Chemosensitizes the Growth Inhibitory Activity of Doxorubicin in Colorectal Cancer Model: A Novel In Vitro, In Vivo and In Silico Analysis. Molecules 2022; 27:molecules27072192. [PMID: 35408590 PMCID: PMC9000458 DOI: 10.3390/molecules27072192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Garlic’s main bioactive organosulfur component, diallyl trisulfide (DATS), has been widely investigated in cancer models. However, DATS is not suitable for clinical use due to its low solubility. The current study seeks to improve DATS bioavailability and assess its chemopreventive and chemosensitizing properties in an AOM-induced colorectal cancer model. The polyethylene glycol coated Distearoylphosphatidylcholine/Cholesterol (DSPC/Chol) comprising DATS-loaded DATSL and doxorubicin (DOXO)-encapsulated DOXL liposomes was prepared and characterized. The changes in the sensitivity of DATS and DOXO by DATSL and DOXL were evaluated in RKO and HT-29 colon cancer cells. The synergistic effect of DATSL and DOXL was studied by cell proliferation assay in the combinations of IC10, IC25, and IC35 of DATSL with the IC10 of DOXL. AOM, DATSL, and DOXL were administered to different groups of mice for a period of 21 weeks. The data exhibited ~93% and ~46% entrapment efficiency of DATSL and DOXL, respectively. The size of sham liposomes was 110.5 nm, whereas DATSL and DOXL were 135.5 nm and 169 nm, respectively. DATSL and DOXL exhibited significant sensitivity in the cell proliferation experiment, lowering their IC50 doses by more than 8- and 14-fold, respectively. However, the DATSL IC10, IC25, and IC35 showed escalating chemosensitivity, and treated the cells in combination with DOXL IC10. Analysis of histopathological, cancer marker enzymes, and antioxidant enzymes revealed that the high dose of DATSL pretreatment and DOXL chemotherapy is highly effective in inhibiting AOM-induced colon cancer promotion. The combination of DATSL and DOXL indicated promise as a colorectal cancer treatment in this study. Intermolecular interactions of DATS and DOXO against numerous cancer targets by molecular docking indicated MMP-9 as the most favourable target for DATS exhibiting binding energy of −4.6 kcal/mol. So far, this is the first research to demonstrate the chemopreventive as well as chemosensitizing potential of DATSL in an animal model of colorectal cancer.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Ahmad A. Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia;
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.); (K.S.A.); (A.A.A.); (K.N.A.)
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia;
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: ; Tel.: +966-590038460; Fax: +966-63801628
| |
Collapse
|