1
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Raab C, Brugger S, Lechner JS, Barbalho GN, Gratieri T, Agarwal P, Rupenthal ID, Keck CM. Utilizing an Ex Vivo Skin Penetration Analysis Model for Predicting Ocular Drug Penetration: A Feasibility Study with Curcumin Formulations. Pharmaceutics 2024; 16:1302. [PMID: 39458631 PMCID: PMC11510696 DOI: 10.3390/pharmaceutics16101302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Objective: This study aimed to investigate the feasibility of using the digital image processing technique, developed to semi-quantitatively study dermal penetration, to study corneal penetration in an ex vivo porcine eye model. Here, we investigated various formulation strategies intended to enhance dermal and corneal bioavailability of the model hydrophobic drug, curcumin. METHODS Several formulation principles were explored, including oily solutions, oily suspensions, aqueous nanosuspension, micelles, liposomes and cyclodextrins. The dermal penetration efficacy was tested using an ex vivo porcine ear model previously developed at Philipps-Universität Marburg with subsequent digital image processing. This image analysis method was further applied to study corneal penetration using an ex vivo porcine whole-eye model. RESULTS For dermal penetration, oily solutions, oily suspensions and nanosuspensions exhibited the least penetration, whereas liposomes and cyclodextrins showed enhanced penetration. Corneal curcumin penetration correlated with dermal penetration, with curcumin loaded into cyclodextrins penetrating the deepest. CONCLUSIONS Overall, our study suggests that the image analysis method previously developed for ex vivo skin penetration can easily be repurposed to study corneal penetration of hydrophobic drugs.
Collapse
Affiliation(s)
- Christian Raab
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (C.R.)
| | - Stefan Brugger
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand (G.N.B.); (P.A.)
| | - Jara-Sophie Lechner
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (C.R.)
| | - Geisa Nascimento Barbalho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand (G.N.B.); (P.A.)
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, Brazil;
| | - Taís Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, Brazil;
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand (G.N.B.); (P.A.)
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand (G.N.B.); (P.A.)
| | - Cornelia M. Keck
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia 70910-900, Brazil;
| |
Collapse
|
3
|
Kaushik V, Schatton W, Keck CM. Influence of type of vehicle on dermal penetration efficacy of hydrophilic, amphiphilic, lipophilic model drugs. Eur J Pharm Biopharm 2024; 200:114305. [PMID: 38685437 DOI: 10.1016/j.ejpb.2024.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The influence of the vehicle on the dermal penetration efficacy of three different active ingredient (AI) surrogates (hydrophilic, amphiphilic, lipophilic model drugs), that were incorporated into these vehicles, was investigated with the ex vivo porcine ear model, which allowed to assess time and space resolved dermal penetration profiles of the AI. Fifteen different vehicles, including classical vehicles (hydrogel, oleogel, o/w cream, w/o ointment, amphiphilic cream) and innovative vehicles were included into the study. Results show tremendous differences in the penetration efficacy of the AI among the different vehicles. The differences in the total amounts of penetrated AI between lowest and highest penetration were about 3-fold for the hydrophilic AI surrogate, 3.5-fold for the amphiphilic AI and almost 5-fold for the lipophilic AI. The penetration depth was also affected by the type of vehicle. Some vehicles allowed the AI to penetrate only into the upper layers of the stratum corneum, whereas others allowed the penetration of the AI into deeper layers of the viable dermis. Data therefore demonstrate that the vehicles in compounding medications cannot be exchanged against each other randomly if a constant and safe medication is desired. The data obtained in the study provide first information on which types of vehicles are exchangeable and which types of vehicles can be used for enhanced dermal penetration of AI, thus providing a first base for a science-based selection of vehicles that can provide both, efficient dermal drug delivery and skin barrier function maintenance/strengthening at the same time.
Collapse
Affiliation(s)
- Vasudha Kaushik
- Department of Pharmaceutics and Biopharmaceutics, Philipps - Universität Marburg, Robert - Koch - Straße 4, 35037 Marburg, Germany
| | | | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps - Universität Marburg, Robert - Koch - Straße 4, 35037 Marburg, Germany.
| |
Collapse
|
4
|
Abdelkader A, Nallbati L, Keck CM. Improving the Bioactivity of Norfloxacin with Tablets Made from Paper. Pharmaceutics 2023; 15:pharmaceutics15020375. [PMID: 36839695 PMCID: PMC9959448 DOI: 10.3390/pharmaceutics15020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
(1) Background: Many drugs possess poor bioavailability, and many strategies are available to overcome this issue. In this study, smartFilm technology, i.e., a porous cellulose matrix (paper), in which the active compound can be loaded onto in an amorphous state was utilised for oral administration to improve the solubility and bioactivity of a poorly soluble BSC class IV antibiotic. (2) Methods: Norfloxacin was used as the model drug and loaded into commercially available paper. The resulting norfloxacin-loaded smartFilms were transformed into smartFilm granules via wet granulation and the resulting norfloxacin-loaded smartFilm granules were transformed into norfloxacin-loaded tablets made from paper, i.e., smartFilm tablets. The crystalline state of norfloxacin was investigated, as well as the pharmaceutical properties of the granules and the tablets. The bioactivity of the smartFilm tablets was assessed in vitro and ex vivo to determine the antibacterial activity of norfloxacin. The results were compared to a physical mixture tablet that contained non-loaded paper granules and equal amounts of norfloxacin as a crystalline powder. (3) Results: Norfloxacin-loaded smartFilm granules and norfloxacin-loaded smartFilm tablets contained norfloxacin in an amorphous state, which resulted in an improved and faster release of norfloxacin when compared to the physical mixture tablet. The bioactivity was up to three times higher when compared to the physical mixture tablet. The ex vivo model was demonstrated to be a useful tool that allows for a fast and cost-effective discrimination between "good" and "bad" formulations. It provides realistic physiological conditions and can therefore yield meaningful, additional biopharmaceutical information that cannot be assessed in classical in vitro experiments. (4) Conclusions: smartFilm tablets are a promising, universal, industrially feasible and cost-effective formulation strategy for improved solubility and enhanced bioactivity of poorly soluble drugs.
Collapse
Affiliation(s)
- Ayat Abdelkader
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
- Assiut International Center of Nanomedicine, Al-Rajhi Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Laura Nallbati
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
- Correspondence: ; Tel.:+49-6421-282-5881
| |
Collapse
|
5
|
Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin. Sci Rep 2022; 12:19365. [PMID: 36371457 PMCID: PMC9653389 DOI: 10.1038/s41598-022-23514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
This study compared the ability of Nanostructured Lipid Carrier (NLC), Solid Lipid Nanoparticles (SLN), and Cream systems in delivering para Methoxycinnamic Acid (PMCA) to the dermis layer of the skin. Wistar rats were used as research subjects. NLC and SLN were made by applying the high shear homogenization method. Nile red was used as a penetration indicator based on its fluorescence. The interaction between fluorescence labeled NLC, SLN, or Cream and rat skin was visualized by fluorescence microscopy. Observations were made after 2 and 4.5 h of smearing the test sample. From the observations, it was known that the system/lipid base could penetrate the stratum corneum for delivering drugs. Penetration speed differs among systems as does the number of PMCAs that can be delivered. In this study, it can be concluded that the NLC system is able to deliver PMCA more quickly and in greater quantities to the dermis than SLN and Cream.
Collapse
|
6
|
Freeman D, Moreaux K, Beavers B, White G. Cold Panniculitis and Subcutaneous Fat Necrosis of the Newborn: The Continual Sequelae in the Non-pharmacological Conversion of Supraventricular Tachycardia. Clin Pediatr (Phila) 2022; 62:394-398. [PMID: 36214187 DOI: 10.1177/00099228221127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David Freeman
- University of Arkansas/Arkansas Children's Hospital, Little Rock, AR, USA
| | - Katie Moreaux
- University of Arkansas/Arkansas Children's Hospital, Little Rock, AR, USA
| | - Blair Beavers
- University of Arkansas/Arkansas Children's Hospital, Little Rock, AR, USA
| | - Gwenevere White
- University of Arkansas/Arkansas Children's Hospital, Little Rock, AR, USA
| |
Collapse
|
7
|
Abdelkader A, Preis E, Keck CM. SmartFilm Tablets for Improved Oral Delivery of Poorly Soluble Drugs. Pharmaceutics 2022; 14:1918. [PMID: 36145666 PMCID: PMC9500710 DOI: 10.3390/pharmaceutics14091918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Numerous oral drugs exhibit limited bioavailability due to their poor solubility and poor intestinal permeability. The smartFilm technology is an innovative approach that improves the drug aqueous solubility via incorporating the drug in an amorphous state into a cellulose-based matrix, i.e., paper. smartFilms can be transformed into a free-flowing physical form (i.e., paper granules) that can be compressed into tablets with optimum physico-chemical and pharmaceutical properties. The aim of this study was to investigate if smartFilm tablets are suitable for improved oral delivery of poorly water-soluble drugs. (2) Methods: Curcumin is a poorly soluble drug with low intestinal permeability and was used for the production of curcumin-loaded smartFilms. The curcumin-loaded smartFilms were transferred into smartFilm granules which were then compressed into curcumin-loaded smartFilm tablets. The tablets were characterized regarding their physico-chemical and pharmaceutical properties, and the intestinal permeability of curcumin was determined with the ex vivo porcine intestinal model. The ex vivo intestinal permeability of curcumin from the smartFilm tablets was compared to a physical mixture of curcumin and paper and to a classical and to an innovative commercial product, respectively. (3) Results: The produced curcumin-loaded smartFilm tablets fulfilled the European Pharmacopoeia requirements, incorporated curcumin in amorphous state within the cellulose matrix and exhibited an enhanced dissolution rate. The ex vivo intestinal permeation data were shown to correlate to the in vitro dissolution data. The ex vivo intestinal permeation of curcumin from the smartFilm tablets was about two-fold higher when compared to the physical mixture and the classical commercial product. No differences in the ex vivo bioavailability were found between the smartFilm tablets and the innovative commercial product. (4) Conclusions: smartFilm tablets are a cost-effective and industrially feasible formulation approach for the formulation of poorly water-soluble drugs, i.e., BCS class II and IV drugs.
Collapse
Affiliation(s)
- Ayat Abdelkader
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
- Assiut International Center of Nanomedicine, Al-Rajhi Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
8
|
Alhibah M, Kröger M, Schanzer S, Busch L, Lademann J, Beckers I, Meinke MC, Darvin ME. Penetration Depth of Propylene Glycol, Sodium Fluorescein and Nile Red into the Skin Using Non-Invasive Two-Photon Excited FLIM. Pharmaceutics 2022; 14:1790. [PMID: 36145537 PMCID: PMC9506119 DOI: 10.3390/pharmaceutics14091790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
The stratum corneum (SC) forms a strong barrier against topical drug delivery. Therefore, understanding the penetration depth and pathways into the SC is important for the efficiency of drug delivery and cosmetic safety. In this study, TPT-FLIM (two-photon tomography combined with fluorescence lifetime imaging) was applied as a non-invasive optical method for the visualization of skin structure and components to study penetration depths of exemplary substances, like hydrophilic propylene glycol (PG), sodium fluorescein (NaFl) and lipophilic Nile red (NR) into porcine ear skin ex vivo. Non-fluorescent PG was detected indirectly based on the pH-dependent increase in the fluorescence lifetime of SC components. The pH similarity between PG and viable epidermis limited the detection of PG. NaFl reached the viable epidermis, which was also proved by laser scanning microscopy. Tape stripping and confocal Raman micro-spectroscopy were performed additionally to study NaFl, which revealed penetration depths of ≈5 and ≈8 μm, respectively. Lastly, NR did not permeate the SC. We concluded that the amplitude-weighted mean fluorescence lifetime is the most appropriate FLIM parameter to build up penetration profiles. This work is anticipated to provide a non-invasive TPT-FLIM method for studying the penetration of topically applied drugs and cosmetics into the skin.
Collapse
Affiliation(s)
- Mohammad Alhibah
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Mathematics, Physics and Chemistry, Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Marius Kröger
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sabine Schanzer
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Loris Busch
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps University Marburg, 35037 Marburg, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingeborg Beckers
- Department of Mathematics, Physics and Chemistry, Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany
| | - Martina C. Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E. Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
9
|
Keck CM, Chaiprateep EO, Dietrich H, Sengupta S. Influence of Mechanical Skin Treatments on Dermal Penetration Efficacy of Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14091788. [PMID: 36145538 PMCID: PMC9502347 DOI: 10.3390/pharmaceutics14091788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The effective dermal penetration of active ingredients (AI) is a major task in the formulation of topical products. Besides the vehicle, the mechanical skin treatments are also considered to impact the penetration efficacy of AI. In particular, professional skin treatments, i.e., professional cosmetic skin treatments, are considered to be optimal for the dermal delivery of AI. However, a systematic study that proves these theories is not yet available and was therefore performed in this study while utilizing an ex vivo porcine ear model with subsequent digital image analysis. Hydrophilic and lipophilic fluorescent dyes were used as AI surrogates and were applied onto the skin without and with professional skin treatments. The skin hydration and the penetration efficacy were determined, respectively. Results showed that professional skin treatments with massage were able to increase the skin hydration, whereas a professional skin treatment without massage could not increase the skin hydration when compared to skin without professional skin treatment. Regarding the penetration efficacy, it was found that all parameters tested, i.e., type of professional skin treatment, lipophilicity of the AI, and the time point at which the AI are applied onto the skin, can have a tremendous impact on the penetration efficacy of the AI. The most effective penetration and the most effective skin hydration is achieved with a professional skin treatment that includes a professional skin massage. This kind of skin treatment can therefore be used to improve dermal drug delivery.
Collapse
|
10
|
Florin-Muschert S. Drug-Release Mechanisms Elucidated by Imaging Techniques: Visualizing the Invisible! Pharmaceutics 2022; 14:pharmaceutics14061165. [PMID: 35745737 PMCID: PMC9230386 DOI: 10.3390/pharmaceutics14061165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Imaging techniques such as Raman spectroscopy, electron microscopy, laser scanning confocal microscopy, atomic force microscopy, tomography, magnetic resonance imaging, and terahertz are powerful tools to elucidate drug-release mechanisms from different types of delivery devices [...]
Collapse
|
11
|
Particle-Assisted Dermal Penetration-A Simple Formulation Strategy to Foster the Dermal Penetration Efficacy. Pharmaceutics 2022; 14:pharmaceutics14051039. [PMID: 35631625 PMCID: PMC9144500 DOI: 10.3390/pharmaceutics14051039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: The study systematically investigated the influence of dispersed particles within a topical formulation on the dermal penetration efficacy of active compounds that are dissolved in the water phase of this formulation. The aim was to prove or disprove if particle-assisted dermal penetration can be used for improved dermal drug delivery. (2) Methods: Fluorescein was used as a surrogate for a hydrophilic active ingredient (AI). It was dissolved in the water phase of different formulations with and without particles. Two different types of particles (titanium dioxide and nanostructured lipid carriers (NLC)) were used. The influence of particle size and number of particles and the influence of skin hydrating excipients was also investigated. (3) Results demonstrate that the addition of particles can strongly increase the dermal penetration efficacy of AI. The effect depends on the size of the particles and the number of particles in the formulation, where smaller sizes and higher numbers resulted in higher penetration parameters. Formulations with NLC that contained 20% w/w or 40% w/w particles resulted in an about 2-fold higher amount of penetrated AI and increased the penetration depth about 2.5-fold. The penetration-enhancing effect was highly significant (p < 0.001) and allowed for an efficient delivery of the AI in the viable dermis. In contrast, the penetration-enhancing effect of excipients that increase the skin hydration was found to be very limited and not significant (≤5%, p > 0.05). (4) Conclusions: Based on the results, it can be concluded that particle-assisted dermal penetration can be considered to be a simple but highly efficient and industrially feasible formulation principle for improved and tailor-made dermal drug delivery of active compounds.
Collapse
|
12
|
Alnemari RM, Brüßler J, Keck CM. Assessing the Oxidative State of the Skin by Combining Classical Tape Stripping with ORAC Assay. Pharmaceuticals (Basel) 2022; 15:ph15050520. [PMID: 35631347 PMCID: PMC9146784 DOI: 10.3390/ph15050520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/31/2022] Open
Abstract
The antioxidant barrier system of the skin acts as the main defence against environmental pro-oxidants. Impaired skin oxidative state is linked to unhealthy conditions such as skin autoimmune diseases and cancer. Thus, the evaluation of the overall oxidative state of the skin plays a key role in further understanding and prevention of these disorders. This study aims to present a novel ex vivo model to evaluate the skin oxidative state by the measurement of its antioxidant capacity (AOC). For this the ORAC assay was combined with classical tape stripping and infrared densitometry to evaluate the oxidative state of the stratum corneum (SC). Outcomes implied the suitability of the used model to determine the intrinsic antioxidant capacity (iAOC) of the skin. The average iAOC of untreated skin was determined as 140 ± 7.4 µM TE. Skin exposure to UV light for 1 h reduced the iAOC by about 17%, and exposure for 2 h decreased the iAOC by about 30%. Treatment with ascorbic acid (AA) increased the iAOC in a dose-dependent manner and reached an almost two-fold iAOC when 20% AA solution was applied on the skin. The application of coenzyme Q10 resulted in an increase in the iAOC at low doses but decreased the iAOC when doses > 1% were applied on the skin. The results show that the combination of classical tape stripping and ORAC assay is a cost-effective and versatile method to evaluate the skin oxidative state and the pro-oxidate and antioxidative effects of topical skin treatments on the iAOC of the skin. Therefore, the model can be considered to be a valuable tool in skin research.
Collapse
|
13
|
Keck CM, Abdelkader A, Pelikh O, Wiemann S, Kaushik V, Specht D, Eckert RW, Alnemari RM, Dietrich H, Brüßler J. Assessing the Dermal Penetration Efficacy of Chemical Compounds with the Ex-Vivo Porcine Ear Model. Pharmaceutics 2022; 14:678. [PMID: 35336052 PMCID: PMC8951478 DOI: 10.3390/pharmaceutics14030678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The ex vivo porcine ear model is often used for the determination of the dermal penetration efficacy of chemical compounds. This study investigated the influence of the post-slaughter storage time of porcine ears on the dermal penetration efficacy of chemical compounds. (2) Methods: Six different formulations (curcumin and different fluorescent dyes in different vehicles and/or nanocarriers) were tested on ears that were (i) freshly obtained, (ii) stored for 24 or 48 h at 4 °C after slaughter before use and (iii) freshly frozen and defrosted 12 h before use. (3) Results: Results showed that porcine ears undergo post-mortem changes. The changes can be linked to rigor mortis and all other well-described phenomena that occur with carcasses after slaughter. The post-mortem changes modify the skin properties of the ears and affect the penetration efficacy. The onset of rigor mortis causes a decrease in the water-holding capacity of the ears, which leads to reduced penetration of chemical compounds. The water-holding capacity increases once the rigor is released and results in an increased penetration efficacy for chemical compounds. Despite different absolute penetration values, no differences in the ranking of penetration efficacies between the different formulations were observed between the differently aged ears. (4) Conclusions: All different types of ears can be regarded to be suitable for dermal penetration testing of chemical compounds. The transepidermal water loss (TEWL) and/or skin hydration of the ears were not correlated with the ex vivo penetration efficacy because both an impaired skin barrier and rigor mortis cause elevated skin hydration and TEWL values but an opposite penetration efficacy. Other additional values (for example, pH and/or autofluorescence of the skin) should, therefore, be used to select suitable and non-suitable skin areas for ex vivo penetration testing. Finally, data from this study confirmed that smartFilms and nanostructured lipid carriers (NLC) represent superior formulation strategies for efficient dermal and transdermal delivery of curcumin.
Collapse
Affiliation(s)
- Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.A.); (O.P.); (S.W.); (V.K.); (D.S.); (R.W.E.); (R.M.A.); (H.D.); (J.B.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abraham AM, Wiemann S, Ambreen G, Zhou J, Engelhardt K, Brüßler J, Bakowsky U, Li SM, Mandic R, Pocsfalvi G, Keck CM. Cucumber-Derived Exosome-like Vesicles and PlantCrystals for Improved Dermal Drug Delivery. Pharmaceutics 2022; 14:476. [PMID: 35335851 PMCID: PMC8955785 DOI: 10.3390/pharmaceutics14030476] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
(1) Background: Extracellular vesicles (EVs) are considered to be efficient nanocarriers for improved drug delivery and can be derived from mammalian or plant cells. Cucumber-derived EVs are not yet described in the literature. Therefore, the aim of this study was to produce and characterize cucumber-derived EVs and to investigate their suitability to improve the dermal penetration efficacy of a lipophilic active ingredient (AI) surrogate. (2) Methods: The EVs were obtained by classical EVs isolation methods and by high pressure homogenization (HPH). They were characterized regarding their physico-chemical and biopharmaceutical properties. (3) Results: Utilization of classical isolation and purification methods for EVs resulted in cucumber-derived EVs. Their dermal penetration efficacy for the AI surrogate was 2-fold higher when compared to a classical formulation and enabled a pronounced transdermal penetration into the viable dermis. HPH resulted in submicron sized particles composed of a mixture of disrupted plant cells. A successful isolation of pure EVs from this mixture was not possible with classical EVs isolation methods. The presence of EVs was, therefore, proven indirectly. For this, the lipophilic drug surrogate was admixed to the cucumber juice either prior to or after HPH. Admixing of the drug surrogate to the cucumber prior to the HPH resulted in a 1.5-fold increase in the dermal penetration efficacy, whereas the addition of the AI surrogate to the cucumber after HPH was not able to improve the penetration efficacy. (4) Conclusions: Results, therefore, indicate that HPH causes the formation of EVs in which AI can be incorporated. The formation of plant EVs by HPH was also indicated by zeta potential analysis.
Collapse
Affiliation(s)
- Abraham M. Abraham
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (S.W.); (G.A.); (K.E.); (J.B.); (U.B.)
- EVs & MS Research Group, Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, (CNR), 80131 Napoli, Italy;
| | - Sabrina Wiemann
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (S.W.); (G.A.); (K.E.); (J.B.); (U.B.)
| | - Ghazala Ambreen
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (S.W.); (G.A.); (K.E.); (J.B.); (U.B.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Campus Marburg, University Hospital Giessen and Marburg, Baldingerstrasse, 35033 Marburg, Germany;
| | - Jenny Zhou
- Department of Pharmaceutical Biology and Biotechnology, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.Z.); (S.-M.L.)
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (S.W.); (G.A.); (K.E.); (J.B.); (U.B.)
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (S.W.); (G.A.); (K.E.); (J.B.); (U.B.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (S.W.); (G.A.); (K.E.); (J.B.); (U.B.)
| | - Shu-Ming Li
- Department of Pharmaceutical Biology and Biotechnology, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (J.Z.); (S.-M.L.)
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, Campus Marburg, University Hospital Giessen and Marburg, Baldingerstrasse, 35033 Marburg, Germany;
| | - Gabriella Pocsfalvi
- EVs & MS Research Group, Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, (CNR), 80131 Napoli, Italy;
| | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (S.W.); (G.A.); (K.E.); (J.B.); (U.B.)
| |
Collapse
|