1
|
Song B, Hao M, Zhang S, Niu W, Li Y, Chen Q, Li S, Tong C. Comprehensive review of Hesperetin: Advancements in pharmacokinetics, pharmacological effects, and novel formulations. Fitoterapia 2024; 179:106206. [PMID: 39255908 DOI: 10.1016/j.fitote.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Hesperetin is a flavonoid compound naturally occurring in the peel of Citrus fruits from the Rutaceae family. Previous studies have demonstrated that hesperetin exhibits various pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidative, anti-aging, and neuroprotective properties. In recent years, with the increasing prevalence of diseases and the rising awareness of traditional Chinese medicine, hesperetin has garnered growing attention for its wide-ranging pharmacological effects. To substantiate its health benefits and elucidate potential mechanisms, knowledge of pharmacokinetics is crucial. However, the limited solubility of hesperetin restricts its bioavailability, thereby diminishing its efficacy as a beneficial health agent. To enhance the bioavailability of hesperetin, various novel formulations have been developed, including nanoparticles, liposomes, and cyclodextrin inclusion complexes. This article reviews recent advances in the pharmacokinetics of hesperetin and methods to improve its bioavailability, as well as its pharmacological effects and mechanisms, aiming to provide a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Bocui Song
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Administration Committee of Jilin Yongji Economic Development Zone, Jilin, Jilin, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| |
Collapse
|
2
|
Fitriani L, Dirfedli F, Yuliandra Y, Setyawan D, Uchida M, Oyama H, Uekusa H, Zaini E. A novel cocrystal approach celecoxib with piperine: Simultaneously enhance dissolution rate and compressibility. J Pharm Sci 2024; 113:3565-3573. [PMID: 39414077 DOI: 10.1016/j.xphs.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Celecoxib, a selective COX-2 inhibitor non-steroidal anti-inflammatory drug (NSAID), exhibits analgesic and anti-inflammatory properties similar to piperine, the secondary metabolite of Piper nigrum L. Unfortunately, celecoxib has a low compressibility and low dissolution rate in aqueous medium. This study aimed to prepare a cocrystal of celecoxib and piperine to enhance the dissolution rate and compressibility properties of celecoxib. The cocrystal was synthesized using the seeding method and thoroughly characterized using Powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectrophotometry, and single-crystal X-ray diffraction techniques. The complete change in PXRD, decrease in melting point in DSC measurements, and shift in the NH stretching band in the FT-IR spectrum suggested the formation of cocrystals phase. Single-crystal XRD confirmed the formation of an equimolar ratio of cocrystals of celecoxib and piperine. The intrinsic dissolution test was conducted to confirm the impact on the cocrystal to dissolution, and it showed a slight increase compared to intact celecoxib. To assess the physico-mechanical properties, the cocrystal powders were compressed into tablets with varying forces. The results demonstrated a significant improvement in compressibility compared with intact celecoxib owing to the slip plane in the crystal lattice of the cocrystal. In conclusion, our novel celecoxib-piperine cocrystal exhibited distinct physicochemical characteristics compared to intact celecoxib, showing enhanced dissolution rate and compressibility.
Collapse
Affiliation(s)
- Lili Fitriani
- Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia
| | - Fauziyyah Dirfedli
- Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia
| | - Yori Yuliandra
- Department Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Andalas, 25163, Indonesia
| | - Dwi Setyawan
- Department of Pharmaceutics Faculty of Pharmacy, Universitas Airlangga, 60115, Indonesia
| | - Masaki Uchida
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Hironaga Oyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Erizal Zaini
- Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
| |
Collapse
|
3
|
Panzade P, Wagh A, Harale P, Bhilwade S. Pharmaceutical cocrystals: a rising star in drug delivery applications. J Drug Target 2024; 32:115-127. [PMID: 38164658 DOI: 10.1080/1061186x.2023.2300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Pharmaceutical cocrystals, owing to their manifold applications, are acting as bridge between drug discovery and pharmaceutical product development. The ability to scale up pharmaceutical cocrystals through continuous manufacturing approaches offers superior and economic pharmaceutical products. Moreover, cocrystals can be an aid for the nanoparticulate systems to solve the issues related to scale-up and cost. Cocrystals grabbed attention of academic researchers and pharmaceutical scientist due to their potential to target various diseases like cancer. The present review is mainly focussed on the diverse and comprehensive applications of pharmaceutical cocrystals in drug delivery including solubility and dissolution enhancement, improvement of bioavailability of drug, mechanical and flow properties of active pharmaceutical ingredients, controlled/sustained release and colour tuning of API. Besides, phytochemical based cocrystals, multi-drug cocrystals and cocrystals for tumour therapy have been discussed in this review. Additionally, recent progress pertinent to pharmaceutical cocrystals is also included, which may provide future directions to manufacturing and scale-up of cocrystals.
Collapse
Affiliation(s)
- Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | - Anita Wagh
- Department of Pharmacognosy, Srinath College of Pharmacy, Aurangabad, India
| | - Pratiksha Harale
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | - Sumeet Bhilwade
- Department of Pharmacognosy, Srinath College of Pharmacy, Aurangabad, India
| |
Collapse
|
4
|
Yu JE, You BH, Bae M, Han SY, Jung K, Choi YH. Evaluation of Pharmacokinetic Feasibility of Febuxostat/L-pyroglutamic Acid Cocrystals in Rats and Mice. Pharmaceutics 2023; 15:2167. [PMID: 37631381 PMCID: PMC10459842 DOI: 10.3390/pharmaceutics15082167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Febuxostat (FBX), a selective xanthine oxidase inhibitor, belongs to BCS class II, showing low solubility and high permeability with a moderate F value (<49%). Recently, FBX/L-pyroglutamic acid cocrystal (FBX-PG) was developed with an improving 4-fold increase of FBX solubility. Nevertheless, the in vivo pharmacokinetic properties of FBX-PG have not been evaluated yet. Therefore, the pharmacokinetic feasibility of FBX in FBX- and FBX-PG-treated rats and mice was compared in this study. The results showed that the bioavailability (F) values of FBX were 210% and 159% in FBX-PG-treated rats and mice, respectively. The 2.10-fold greater total area under the plasma concentration-time curve from time zero to infinity (AUC0-inf) of FBX was due to the increased absorption [i.e., 2.60-fold higher the first peak plasma concentration (Cmax,1) at 15 min] and entero-hepatic circulation of FBX [i.e., 1.68-fold higher the second peak plasma concentration (Cmax,2) at 600 min] in FBX-PG-treated rats compared to the FBX-treated rats. The 1.59-fold greater AUC0-inf of FBX was due to a 1.65-fold higher Cmax,1 at 5 min, and a 1.15-fold higher Cmax,2 at 720 min of FBX in FBX-PG-treated mice compared to those in FBX-treated mice. FBX was highly distributed in the liver, stomach, small intestine, and lungs in both groups of mice, and the FBX distributions to the liver and lungs were increased in FBX-PG-treated mice compared to FBX-treated mice. The results suggest the FBX-PG has a suitable pharmacokinetic profile of FBX for improving its oral F value.
Collapse
Affiliation(s)
- Jeong-Eun Yu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Mingoo Bae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Kiwon Jung
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Oncobix Co., Ltd., 120 Heungdeokjungang-ro, Giheung-gu, Yongin-si 16950, Gyeonggi-do, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| |
Collapse
|
5
|
Kara DD, Bangera PD, Mehta CH, Tanvi K, Rathnanand M. In Silico Screening as a Tool to Prepare Drug-Drug Cocrystals of Ibrutinib-Ketoconazole: a Strategy to Enhance Their Solubility Profiles and Oral Bioavailability. AAPS PharmSciTech 2023; 24:164. [PMID: 37552343 DOI: 10.1208/s12249-023-02621-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023] Open
Abstract
Ibrutinib (IBR) is a biopharmaceutical classification system (BCS) class II drug and an irreversible Bruton's tyrosine kinase (BTK) inhibitor. IBR has an extremely low oral bioavailability due to the activity of the CYP3A4 enzyme. The current intention of the research was to enhance solubility followed by oral bioavailability of IBR using the hot melt extrusion (HME) technique by formulating drug-drug cocrystals (DDCs). Ketoconazole (KET) is an active CYP3A4 inhibitor and was selected based on computational studies and solubility parameter prediction. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM) evaluations were employed for estimating the formation of IBR-KET DDCs. The IBR-KET DDC system was discovered to have a hydrogen bond (H-bond) and π-π-stacking interactions, in accordance with the computational results. Further, IBR-KET DDCs showed enhanced solubility, stability, powder dissolution, in vitro release, and flow properties. Furthermore, IBR-KET-DDCs were associated with enhanced cytotoxic activity in K562-CCL-243 cancer cell lines when compared with IBR and KET alone. In vivo pharmacokinetic studies have shown an enhanced oral bioavailability of up to 4.30 folds of IBR and 2.31 folds of KET through IBR-KET-DDCs compared to that of the IBR and KET suspension alone. Thus, the prepared IBR-KET-DDCs using the HME technique stand as a favorable drug delivery system that augments the solubility and oral bioavailability of IBR along with KET.
Collapse
Affiliation(s)
- Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pragathi Devanand Bangera
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Katikala Tanvi
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Šafranko S, Šubarić D, Jerković I, Jokić S. Citrus By-Products as a Valuable Source of Biologically Active Compounds with Promising Pharmaceutical, Biological and Biomedical Potential. Pharmaceuticals (Basel) 2023; 16:1081. [PMID: 37630996 PMCID: PMC10458533 DOI: 10.3390/ph16081081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Citrus fruits processing results in the generation of huge amounts of citrus by-products, mainly peels, pulp, membranes, and seeds. Although they represent a major concern from both economical and environmental aspects, it is very important to emphasize that these by-products contain a rich source of value-added bioactive compounds with a wide spectrum of applications in the food, cosmetic, and pharmaceutical industries. The primary aim of this review is to highlight the great potential of isolated phytochemicals and extracts of individual citrus by-products with bioactive properties (e.g., antitumor, antimicrobial, antiviral, antidiabetic, antioxidant, and other beneficial activities with health-promoting abilities) and their potential in pharmaceutical, biomedical, and biological applications. This review on citrus by-products contains the following parts: structural and chemical characteristics; the utilization of citrus by-products; bioactivities of the present waxes and carotenoids, essential oils, pectins, and phenolic compounds; and citrus by-product formulations with enhanced biocactivities. A summary of the recent developments in applying citrus by-products for the treatment of different diseases and the protection of human health is also provided, emphasizing innovative methods for bioaccessibility enhancements (e.g., extract/component encapsulation, synthesis of biomass-derived nanoparticles, nanocarriers, or biofilm preparation). Based on the representative phytochemical groups, an evaluation of the recent studies of the past six years (from 2018 to 2023) reporting specific biological and health-promoting activities of citrus-based by-products is also provided. Finally, this review discusses advanced and modern approaches in pharmaceutical/biological formulations and drug delivery (e.g., carbon precursors for the preparation of nanoparticles with promising antimicrobial activity, the production of fluorescent nanoparticles with potential application as antitumor agents, and in cellular imaging). The recent studies implementing nanotechnology in food science and biotechnology could bring about new insights into providing innovative solutions for new pharmaceutical and medical discoveries.
Collapse
Affiliation(s)
- Silvija Šafranko
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Stela Jokić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| |
Collapse
|
7
|
Ren Y, Yu D, Wu J, Mao S, Chen P, Chen S, Gao Q, Ye X, Tian J. Preparation and physicochemical properties characterization of hesperetin-grafted pectin conjugate. Int J Biol Macromol 2023:124887. [PMID: 37196711 DOI: 10.1016/j.ijbiomac.2023.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Different ratios of hesperetin (HT) were successfully grafted onto pectin from basic water (PB) molecules via free radical-induced reaction. The structure of PB-HT conjugates was characterized by ultraviolet spectroscopy, infrared spectroscopy, X-ray diffraction and scanning electron microscopy. Results indicated that HT was successfully grafted onto pectin molecules, and PB-HT-0.5 showed the highest HT content (103.18 ± 2.76 mg/g). Thermogravimetric analysis indicated that HT crystals showed good thermal resistance and could improve the thermal stability of PB-HT conjugates. Additionally, PB-HT conjugates showed good cytocompatibility and blood compatibility. This study provides a novel and efficient method to synthesize hesperetin-grafted pectin conjugate, which showed potential application in the fields of functional foods in the future.
Collapse
Affiliation(s)
- Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Dandan Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Jiaxiong Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Shuifang Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Pin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Qiang Gao
- Shandong Huihuang Food Co., Ltd., Linyi 276000, Shandong, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Jin S, Haskins MM, Deng CH, Matos CRMO, Zaworotko MJ. Crystal engineering of ionic cocrystals comprising Na/K salts of hesperetin with hesperetin molecules and solubility modulation. IUCRJ 2023; 10:329-340. [PMID: 37079399 PMCID: PMC10161764 DOI: 10.1107/s205225252300266x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Hesperetin (HES) is a weakly acidic flavonoid of topical interest owing to its antiviral properties. Despite the presence of HES in many dietary supplements, its bioavailability is hindered by poor aqueous solubility (1.35 µg ml-1) and rapid first-pass metabolism. Cocrystallization has evolved as a promising approach to generate novel crystal forms of biologically active compounds and enhance the physicochemical properties without covalent modification. In this work, crystal engineering principles were employed to prepare and characterize various crystal forms of HES. Specifically, two salts and six new ionic cocrystals (ICCs) of HES involving sodium or potassium salts of HES were studied using single-crystal X-ray diffraction (SCXRD) or powder X-ray diffraction and thermal measurements. Structures of seven of the new crystalline forms were elucidated by SCXRD, which revealed two families of isostructural ICCs in terms of their crystal packing and confirmed the presence of phenol...phenolate (PhOH...PhO-) supramolecular heterosynthons. Diverse HES conformations were observed amongst these structures, including unfolded and folded (previously unreported) conformations. One ICC, HES with the sodium salt of HES (NESNAH), was scalable to the gram scale and found to be stable after accelerated stability testing (exposure to elevated heat and humidity). HESNAH reached Cmax after 10 min in PBS buffer 6.8 compared with 240 min in pure HES. In addition, relative solubility was observed to be 5.5 times greater, offering the possibility of improved HES bioavailability.
Collapse
Affiliation(s)
- Shasha Jin
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Molly M. Haskins
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Catiúcia R. M. O. Matos
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
9
|
Sun Y, Xia X, Yuan G, Zhang T, Deng B, Feng X, Wang Q. Stachydrine, a Bioactive Equilibrist for Synephrine, Identified from Four Citrus Chinese Herbs. Molecules 2023; 28:molecules28093813. [PMID: 37175222 PMCID: PMC10180305 DOI: 10.3390/molecules28093813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Four Chinese herbs from the Citrus genus, namely Aurantii Fructus Immaturus (Zhishi), Aurantii Fructus (Zhiqiao), Citri Reticulatae Pericarpium Viride (Qingpi) and Citri Reticulatae Pericarpium (Chenpi), are widely used for treating various cardiovascular and gastrointestinal diseases. Many ingredients have already been identified from these herbs, and their various bioactivities provide some interpretations for the pharmacological functions of these herbs. However, the complex functions of these herbs imply undisclosed cholinergic activity. To discover some ingredients with cholinergic activity and further clarify possible reasons for the complex pharmacological functions presented by these herbs, depending on the extended structure-activity relationships of cholinergic and anti-cholinergic agents, a simple method was established here for quickly discovering possible choline analogs using a specific TLC method, and then stachydrine and choline were first identified from these Citrus herb decoctions based on their NMR and HRMS data. After this, two TLC scanning (TLCS) methods were first established for the quantitative analyses of stachydrine and choline, and the contents of the two ingredients and synephrine in 39 samples were determined using the valid TLCS and HPLC methods, respectively. The results showed that the contents of stachydrine (3.04‱) were 2.4 times greater than those of synephrine (1.25‱) in Zhiqiao and about one-third to two-thirds of those of Zhishi, Qingpi and Chenpi. Simultaneously, the contents of stachydrine, choline and synephrine in these herbs present similar decreasing trends with the delay of harvest time; e.g., those of stachydrine decrease from 5.16‱ (Zhishi) to 3.04‱ (Zhike) and from 1.98‱ (Qingpi) to 1.68‱ (Chenpi). Differently, the contents of synephrine decrease the fastest, while those of stachydrine decrease the slowest. Based on these results, compared with the pharmacological activities and pharmacokinetics reported for stachydrine and synephrine, it is indicated that stachydrine can be considered as a bioactive equilibrist for synephrine, especially in the cardio-cerebrovascular protection from these citrus herbs. Additionally, the results confirmed that stachydrine plays an important role in the pharmacological functions of these citrus herbs, especially in dual-directionally regulating the uterus, and in various beneficial effects on the cardio-cerebrovascular system, kidneys and liver.
Collapse
Affiliation(s)
- Yifei Sun
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuexue Xia
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tongke Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Beibei Deng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinyu Feng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qixuan Wang
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Lu Z, Chen H, Mo J, Yuan X, Wang D, Zheng X, Zhu W. Cocrystal of phloretin with isoniazid: preparation, characterization, and evaluation. RSC Adv 2023; 13:10914-10922. [PMID: 37033443 PMCID: PMC10077513 DOI: 10.1039/d3ra00750b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Phloretin (Phl) is a natural flavonoid compound with wide range of biological activities but demonstrates poor water solubility and limited pharmacological effects. In this study, one cocrystal of phloretin-isoniazid (Phl-Inz) was prepared successfully using the solvent evaporation method. The physical properties of cocrystal were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) and single crystal X-ray diffraction (SCXRD). The Hirshfeld surface analysis explained further interactions in the cocrystal. The solubility test showed that the solubility of the cocrystal was increased at pH 1.2 and pH 6.8 compared to that of the pure drug. The test in vitro simulated gastrointestinal digestion showed that the release of phloretin in the cocrystal was better than that in the pure phloretin. The results of the DPPH and ABTS scavenging activity showed that the in vitro antioxidant activity of the cocrystal was improved. The anticancer assay exhibited improved cytotoxicity in the Phl-Inz cocrystal as compared with the pure Phl.
Collapse
Affiliation(s)
- Zhongyu Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Hankun Chen
- Research and Development Department, Guangzhou Qinglan Biotechnology Company Limited Guangzhou China
| | - Jiaxin Mo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaohong Yuan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Dawei Wang
- ShunDe Hospital, Guangzhou University of Chinese Medicine Foshan China
| | - Xianhui Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Wei Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
11
|
Zhu J, Yao H, Lu Y, Lu H, Liu Z, Wang L, Zhao X, Sun C. Theoretical exploration on the molecular configurations, solubilities and chemical reactivities of four flavonoid-based co-crystals. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
12
|
Nano-hesperetin attenuates ketamine-induced schizophrenia-like symptoms in mice: participation of antioxidant parameters. Psychopharmacology (Berl) 2023; 240:1063-1074. [PMID: 36879073 DOI: 10.1007/s00213-023-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Antioxidant natural herb hesperetin (Hst) offers powerful medicinal properties. Despite having noticeable antioxidant properties, it has limited absorption, which is a major pharmacological obstacle. OBJECTIVES The goal of the current investigation was to determine if Hst and nano-Hst might protect mice against oxidative stress and schizophrenia (SCZ)-like behaviors brought on by ketamine (KET). METHODS Seven treatment groups (n=7) were created for the animals. For 10 days, they received distilled water or KET (10 mg/kg) intraperitoneally (i.p). From the 11th to the 40th day, they received daily oral administration of Hst and nano-Hst (10, 20 mg/kg) or vehicle. With the use of the forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), SCZ-like behaviors were evaluated. Malondialdehyde (MDA) and glutathione levels and antioxidant enzyme activities were assessed in the cerebral cortex. RESULTS Our findings displayed that behavioral disorders induced by KET would be improved by nano-Hst treated. MDA levels were much lower after treatment with nano-Hst, and brain antioxidant levels and activities were noticeably higher. The mice treated with nano-Hst had improved outcomes in the behavioral and biochemical tests when compared to the Hst group. CONCLUSIONS Our study's findings showed that nano-Hst had a stronger neuroprotective impact than Hst. In cerebral cortex tissues, nano-Hst treatment dramatically reduced KET-induced (SCZ)-like behavior and oxidative stress indicators. As a result, nano-Hst may have more therapeutic potential and may be effective in treating behavioral impairments and oxidative damage brought on by KET.
Collapse
|
13
|
Amorphous System of Hesperetin and Piperine-Improvement of Apparent Solubility, Permeability, and Biological Activities. Int J Mol Sci 2023; 24:ijms24054859. [PMID: 36902286 PMCID: PMC10002548 DOI: 10.3390/ijms24054859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The low bioaccessibility of hesperetin and piperine hampers their application as therapeutic agents. Piperine has the ability to improve the bioavailability of many compounds when co-administered. The aim of this paper was to prepare and characterize the amorphous dispersions of hesperetin and piperine, which could help to improve solubility and boost the bioavailability of both plant-origin active compounds. The amorphous systems were successfully obtained by means of ball milling, as confirmed by XRPD and DSC studies. What's more, the FT-IR-ATR study was used to investigate the presence of intermolecular interactions between the systems' components. Amorphization enhanced the dissolution rate as a supersaturation state was reached, as well as improving the apparent solubility of both compounds by 245-fold and 183-fold, respectively, for hesperetin and piperine. In the in vitro permeability studies simulating gastrointestinal tract and blood-brain barrier permeabilities, these increased by 775-fold and 257-fold for hesperetin, whereas they were 68-fold and 66-fold for piperine in the GIT and BBB PAMPA models, respectively. Enhanced solubility had an advantageous impact on antioxidant as well as anti-butyrylcholinesterase activities-the best system inhibited 90.62 ± 0.58% of DPPH radicals and 87.57 ± 1.02% butyrylcholinesterase activity. To sum up, amorphization considerably improved the dissolution rate, apparent solubility, permeability, and biological activities of hesperetin and piperine.
Collapse
|
14
|
Wathoni N, Sari WA, Elamin KM, Mohammed AFA, Suharyani I. A Review of Coformer Utilization in Multicomponent Crystal Formation. Molecules 2022; 27:8693. [PMID: 36557827 PMCID: PMC9786674 DOI: 10.3390/molecules27248693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Most recently discovered active pharmaceutical molecules and market-approved medicines are poorly soluble in water, resulting in limited drug bioavailability and therapeutic effectiveness. The application of coformers in a multicomponent crystal method is one possible strategy to modulate a drug's solubility. A multicomponent crystal is a solid phase formed when several molecules of different substances crystallize in a crystal lattice with a certain stoichiometric ratio. The goal of this review paper is to comprehensively describe the application of coformers in the formation of multicomponent crystals as solutions for pharmaceutically active ingredients with limited solubility. Owing to their benefits including improved physicochemical profile of pharmaceutically active ingredients, multicomponent crystal methods are predicted to become increasingly prevalent in the development of active drug ingredients in the future.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Center of Biopolymer for Drug and Cosmetic Delivery, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Wuri Ariestika Sari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Sekolah Tinggi Farmasi Muhammadiyah Cirebon, Jl. Cideng Indah No.3, Cirebon 45153, Indonesia
| |
Collapse
|
15
|
Li J, Huang Y, An Q, Li W, Li J, Liu H, Yang D, Lu Y, Zhou Z. Discovered two polymorphs and two solvates of lamotrigine-tolfenamic acid salt: Thermal behavior and crystal morphological differences. Int J Pharm 2022; 628:122310. [DOI: 10.1016/j.ijpharm.2022.122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
16
|
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A Recent Review on Bio-availability Enhancement of Poorly Water-soluble Drugs by using Bioenhancer and Nanoparticulate Drug Delivery System. Curr Pharm Des 2022; 28:3212-3224. [PMID: 36281868 DOI: 10.2174/1381612829666221021152354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intravenous route of drug administration has maximum bioavailability, which shows 100% of the drug reaches blood circulation, whereas the oral administration of drugs, are readily undergoing pre-systemic metabolism, which means the poor bioavailability of the drug and limited amount of drug reaches the target site. INTRODUCTION Bioenhancers are substances having medicinal entities which enhance the bioavailability and efficacy of the active constituents of drugs. The enhanced bioavailability of drugs may lead to dose reduction, which may further reduce the cost and undesired side effects associated with the drugs. METHODS The solid lipid nanoparticles (SLNs) loaded with ketoprofen made from carnauba wax and beeswax. It was discovered that when the drug-loaded SLNs were mixed with egg-lecithin and Tween-80, as well as when the total surfactant concentration was increased, the average particle size of the drug-loaded SLNs decreased. RESULTS The drug-loaded nanoparticles, when given in combination with bio-enhancers such as piperine and quercetin, enhanced the drug's effectiveness. The Area Under Curve (AUC) was increased when the drug was coupled with bio-enhancers. Based on the findings, it can be concluded that piperine and quercetin when used with drug-loaded nanoparticles improve their therapeutic effectiveness. CONCLUSION Bioenhancers are crucial to amplifying the bioavailability of many synthetic drugs. These attributes are useful to reduce the dose of drugs and increase the therapeutic efficacy of drugs with poor bioavailability.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Sumant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
17
|
Gao L, Zheng WY, Yang WL, Zhang XR. Drug-drug salt forms of vortioxetine with mefenamic acid and tolfenamic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Pang X, Tao Y, Zhang J, Chen H, Sun A, Ren G, Yang W, Pan Q. New Chrysin-based co-crystals: synthesis, characterization and dissolution studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Yuan S, Yang Z, Shang C, Yang D, Wang Y, Qi H, Sun C, Wang L, Zhao X. A DFT study on the structure activity relationship of the natural xanthotoxin-based pharmaceutical cocrystals. J Mol Model 2022; 28:155. [PMID: 35579707 DOI: 10.1007/s00894-022-05152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
In this work, the pharmaceutical cocrystals xanthotoxin-para-aminobenzoic acid (XT-PABA) and xanthotoxin-oxalic acid (XT-OA) were systematically investigated in the gas and water phases by using the quantum chemical approach. The weak intermolecular interactions have been estimated and the O1…H4 (O1…H5) intermolecular hydrogen bond (IHB) with moderate intensity and partial covalent natures was confirmed based on the computed structural parameters, topology analysis, and reduced density gradient (RDG) isosurfaces. The electrophilic and nucleophilic reactivities of different positions associated with intermolecular interactions in XT, PABA, and OA were predicted by plotting the molecular electrostatic potential (MESP) diagrams. The calculated natural bond orbital (NBO) population analysis has quantitatively unveiled the intrinsic reason for the variations in weak intermolecular interactions within XT-PABA and XT-OA cocrystals, from the gas phase to the water phase. Besides, the frontier molecular orbitals (FMOs), Fukui function, and various global reactivity descriptors were computed to measure the chemical reactivity of all the investigated molecular systems. The XT-PABA and XT-OA cocrystals explored in this work could be regarded as valuable exemplar systems to design and synthesize the high-efficiency pharmaceutical cocrystals in the experiment.
Collapse
Affiliation(s)
- Shaohang Yuan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhiguang Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin, 150040, China
| | - Danyang Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yuxuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Haifei Qi
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin, 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|