1
|
Rath P, Prakash D, Ranjan A, Chauhan A, Jindal T, Alamri S, Alamri T, Harakeh S, Haque S. Modulation of Insulin Resistance by Silybum marianum Leaves, and its Synergistic Efficacy with Gymnema sylvestre, Momordica charantia, Trigonella-foenum graecum Against Protein Tyrosine Phosphatase 1B. Biotechnol Genet Eng Rev 2024; 40:3805-3827. [PMID: 36641593 DOI: 10.1080/02648725.2022.2162236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/18/2022] [Indexed: 01/16/2023]
Abstract
Prolonged insulin resistance is considered one of the reasons for Type 2 Diabetes Mellitus. Upregulation of Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signalling, has been well studied as a key regulator in prognosis to insulin resistance. It has been widely studied as a desirable molecular therapeutic target. The study aimed to evaluate the efficacy of leaf extract of the medicinal plants Silybum marianum on the inhibition of PTP1B activity. It also explored the synergistic effect with extracts of Gymnema sylvestre (leaves), Momordica charantia (seeds), and Trigonella foenum graecum (seeds). The S. marianum leaves showed dose-dependent inhibition of PTP1B ranging from 9.48-47.95% (25-1000 μg mL-1). Assay with individual plant extracts showed comparatively lesser inhibition of PTP1B as compared to metformin as a control (38% inhibition). However, a synergistic effect showed nearly 45% PTP1B inhibition (higher than metformin) after the assay was done with selected four plant extracts in combination. The effect of leaf extracts of S. marianum was studied for glucose uptake efficiency in yeast cell lines which was found to be increased by 23% as compared to the control (without extract). Metformin improves glucose upake by yeast cells by ~15-31%. GC-MS analysis revealed 23 phytochemicals, some of which possessed anti-diabetic properties. A dose-dependent increase in antioxidant activity of S. marianum leaves extracts was observed (40-53%). The findings of the study highlighted the presence of various phytochemicals in leaves extracts that are effective against PTP1B inhibition and may help in reinvigorating drug development.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Dhan Prakash
- Amity Institute of Herbal Research and Studies, Amity University Noida, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Sultan Alamri
- Consultant Family Medicine, Ministry of Health, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Gautam SK, Paul RK, Sawant DM, Sarwal A, Raza K. Critical Review on Balanites aegyptiaca Delile: Phytoconstituents, Pharmacological Properties and Nanointerventions. Chin J Integr Med 2024; 30:653-663. [PMID: 37930510 DOI: 10.1007/s11655-023-3563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 11/07/2023]
Abstract
Balanites aegyptiaca Delile (BA) is an enduring xerophytic woody and spinous flowering tree and is commonly known as desert date or Ingudi (Hingot). It belongs to the family Zygophyllaceae, which is specific to be drought areas of Nigeria, Africa, South Asia and India (Rajasthan). In Ayurveda, this traditional medicinal plant is reported for the management of jaundice, syphilis, yellow fever, metabolic disorders, liver, and spleen problems. The main aim of the review is to compile its medicinal uses and further advancements to showcase the promises inherited in various parts of the plant for the benefit of mankind. As per the literature survey, various researchers have focused on the detailed investigation of BA including the phytopharmacological evidence, chemical constituents, nano-formulations, commercialized products, and clinical trials. Several remarkable scaffolds and isolated compounds like diosgenin, yamogenin, balanitin1/2, balanitin 3, bal4/5, bal6/7, rutin-3-glycosides, 3,7-diglycosides, (3, 12, 14, 16)-(12-hydroxycholest-5-ene-3,16-diyl-bis)-D-glucopyranoside and balanitoside have been identified. Additionally, this traditional plant has been scientifically proven by in vitro and in vivo. Based on the complete review of this plant, most of the compounds have been isolated from the fruit and kernel part. Additionally, based on the literature, a histogram was developed for pharmacological activity in which antidiabetic study was found to be more compared to other pharmacological activity. As a spinous desert dates, this plant needs to be explored more to bring out newer phytochemicals in the management of various diseases.
Collapse
Affiliation(s)
- Surendra Kumar Gautam
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Devesh M Sawant
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Amita Sarwal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
3
|
Laib I, Ali BD, Alsalme A, Croun D, Bechelany M, Barhoum A. Therapeutic potential of silver nanoparticles from Helianthemum lippii extract for mitigating cadmium-induced hepatotoxicity: liver function parameters, oxidative stress, and histopathology in wistar rats. Front Bioeng Biotechnol 2024; 12:1400542. [PMID: 39007052 PMCID: PMC11240457 DOI: 10.3389/fbioe.2024.1400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: This study explores the therapeutic potential of silver nanoparticles (Ag NPs) synthesized using a Helianthemum lippii extract in mitigating cadmium-induced hepatotoxicity in Wistar rats. Given the increasing environmental and health concerns associated with cadmium exposure, novel and eco-friendly therapeutic strategies are essential. Methods: Ag NPs were characterized using X-ray diffraction, UV-Vis spectrometry, and energy-dispersive X-ray spectroscopy with scanning electron microscopy, confirming their formation with a cubic crystal structure and particle sizes ranging from 4.81 to 12.84 nm. A sub-acute toxicity study of Ag NPs (2 mg/kg and 10 mg/kg) was conducted, showing no significant difference compared to untreated control rats (n = 3 animals/group). Subsequently, adult Wistar rats (n = 5/group) were divided into a control group and three experimental groups: Ag NPs alone, exposure to 50 mg/kg CdCl2 in drinking water for 35 days, and CdCl2 exposure followed by 0.1 mg/kg/day Ag NPs intraperitoneally for 15 days. Results: In the CdCl2-exposed group, there was a significant decrease in body weight and increases in alanine and aspartate transaminase levels (p < 0.05 vs. control), indicating hepatotoxicity. Additionally, antioxidant defenses were decreased, and malondialdehyde levels were elevated. Liver histology revealed portal fibrosis, inflammation, necrosis, sinusoid and hepatic vein dilation, and cytoplasmic vacuolations. Treatment with Ag NPs post-CdCl2 exposure mitigated several adverse effects on liver function and architecture and improved body weight. Discussion: This study demonstrates the efficacy of Ag NPs synthesized via a green method in reducing cadmium-induced liver damage. These findings support the potential of Ag NPs in therapeutic applications and highlight the importance of sustainable and eco-friendly nanoparticle synthesis methods. By addressing both toxicity concerns and therapeutic efficacy, this research aligns with the growing emphasis on environmentally conscious practices in scientific research and healthcare.
Collapse
Affiliation(s)
- Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued, Algeria
- Higher School of Saharan Agriculture, El Oued, Algeria
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued, Algeria
| | - Boutlilis Djahra Ali
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued, Algeria
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued, Algeria
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Croun
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Gulf University for Science and Technology, GUST, Helwan, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Bhardwaj M, Yadav P, Yadav M, Chahal J, Dalal S, Kataria SK. Phytochemical Screening and Antidiabetic Efficacy of Balanites aegyptiaca Seed Extract and Their Silver Nanoparticles on Muscle and Pancreatic Cell Lines. ACS OMEGA 2024; 9:22660-22676. [PMID: 38826529 PMCID: PMC11137711 DOI: 10.1021/acsomega.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
Balanites aegyptiaca (L.) Delile, a member of the Zygophyllaceae family, is commonly known as the desert date. This tree is famous for yielding edible fruits and is esteemed for its nutritional richness and diverse health advantages. The primary aim of this research was to assess the potential antidiabetic and cytotoxic effects of seed extracts from B. aegyptiaca and its AgNPs for the first time on C2C12 and MIN6 cells, focusing on glucose uptake and insulin secretion, respectively. Additionally, the seed extracts underwent column chromatography through different solvent systems, resulting in the isolation of five distinct fractions with a mixture of methanol and water as an eluting solvent in different ratios. Comprehensive characterization of the aqueous seed extract was carried out using GC-MS and UPLC-MS. The study determined that the aqueous seed extract exhibited no toxicity at any tested concentration (6.25-100 μg/mL) on both cell types. The calculated IC50 values were 206.00 and 140.44 μg/mL for C2C12 and MIN6 cells, respectively, for seeds of AgNPs. Additionally, the aqueous seed extract and their AgNPs significantly increased glucose uptake by 150.45% and 156.00% of the control in C2C12 cells at a concentration of 100 μg/mL. Insulin secretion was also notably enhanced by 3.47- and 3.92-fold of the control after administering seed extracts and AgNPs, respectively, at 100 μg/mL. GC-MS and UPLC-MS analyses identified various compounds across different categories. Notably, the F2 fraction (methanol and water in ratio of 80:20 as eluting solvent) exhibited the highest glucose uptake activity (156.81% of control), while the F3 fraction (methanol and water in ratio of 70:30 as eluting solvent) fraction demonstrated the highest insulin secretion activity (3.70 folds of the control) among all fractions at 100 μg/mL. GC-MS analysis was employed to characterize both fractions, aiming to identify the compounds contributing to their antidiabetic potential. The study's findings concluded that both seed extracts and their AgNPs possess significant antidiabetic properties, with elevated activity observed in the case of AgNPs in both assays. Various compounds, including diosgenin, oleic acid, linoleic acid and palmitic acid esters were detected in the seed extracts, known for their reported antidiabetic and hypoglycemic effects.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department
of Zoology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Poonam Yadav
- Department
of Zoology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Mansi Yadav
- Department
of Zoology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
- Department
of Zoology, Ramjas College, University of
Delhi, New Delhi 110001, India
| | - Jyoti Chahal
- Department
of Zoology, Hindu Girls College, Sonipat 131001, India
| | - Sunita Dalal
- Department
of Biotechnology, Kurukshetra University, Kurukshetra 136119, India
| | - Sudhir Kumar Kataria
- Department
of Zoology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
5
|
Zahran F, Nabil A, Nassr A, Barakat N. Amelioration of exosome and mesenchymal stem cells in rats infected with diabetic nephropathy by attenuating early markers and aquaporin-1 expression. BRAZ J BIOL 2023; 83:e271731. [PMID: 37466513 DOI: 10.1590/1519-6984.271731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/21/2023] [Indexed: 07/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent diabetic microvascular condition. It is the leading cause of kidney disease in the advanced stages. There is no currently effective treatment available. This research aimed to investigate the curative potentials of exosomes isolated from mesenchymal stem cells affecting DN. This study was performed on 70 male adult albino rats. Adult rats were randomized into seven groups: Group I: Negative control group, Group II: DN group, Group III: Balanites treated group, Group IV: MSCs treated group, Group V: Exosome treated group, Group VI: Balanites + MSCs treated group and Group VII: Balanites + exosome treated group. Following the trial period, blood and renal tissues were subjected to biochemical, gene expression analyses, and histopathological examinations. Results showed that MDA was substantially increased, whereas TAC was significantly decreased in the kidney in the DN group compared to normal health rats. Undesired elevated values of MDA levels and a decrease in TAC were substantially ameliorated in groups co-administered Balanites aegyptiacae with MSCs or exosomes compared to the DN group. A substantial elevation in TNF-α and substantially diminished concentration of IGF-1 were noticed in DN rats compared to normal health rats. Compared to the DN group, the co-administration of Balanites aegyptiacae with MSCs or exosomes substantially improved the undesirable elevated values of TNF-α and IGF-1. Furthermore, in the DN group, the mRNA expression of Vanin-1, Nephrin, and collagen IV was significantly higher than in normal healthy rats. Compared with DN rats, Vanin-1, Nephrin, and collagen IV Upregulation were substantially reduced in groups co-administered Balanites aegyptiacae with MSCs or exosomes. In DN rats, AQP1 expression was significantly lower than in normal healthy rats. Furthermore, the groups co-administered Balanites aegyptiacae with MSCs or exosomes demonstrated a substantial increase in AQP1 mRNA expression compared to DN rats.
Collapse
Affiliation(s)
- F Zahran
- Zagazig University, Faculty of Science, Chemistry Department, Biochemistry Division, Zagazig, Egypt
| | - A Nabil
- Beni-Suef University, Faculty of Postgraduate Studies for Advanced Sciences - PSAS, Biotechnology and Life Sciences Department, Beni-Suef, Egypt
| | - A Nassr
- Zagazig University, Faculty of Science, Chemistry Department, Biochemistry Division, Zagazig, Egypt
| | - N Barakat
- Mansoura University, Urology and Nephrology Center, Mansoura, Egypt
| |
Collapse
|
6
|
Farag MA, Baky MH, Morgan I, Khalifa MR, Rennert R, Mohamed OG, El-Sayed MM, Porzel A, Wessjohann LA, Ramadan NS. Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking. RSC Adv 2023; 13:21471-21493. [PMID: 37485437 PMCID: PMC10359763 DOI: 10.1039/d3ra03141a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol d-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University Cairo 11562 Egypt +011-202-2362245
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo 11829 Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Mohamed R Khalifa
- Global Public Health Institute, American University in Cairo New Cairo Egypt
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Osama G Mohamed
- Pharmacognosy Department, College of Pharmacy, Cairo University Cairo 11562 Egypt +011-202-2362245
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Magdy M El-Sayed
- Dairy Science Department, National Research Centre Giza 12622 Egypt
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 Halle (Saale) 06120 Germany
| | - Nehal S Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
7
|
Nuchuchua O, Inpan R, Srinuanchai W, Karinchai J, Pitchakarn P, Wongnoppavich A, Imsumran A. Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods 2023; 12:foods12112257. [PMID: 37297501 DOI: 10.3390/foods12112257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Gymnema inodorum (GI) is a leafy green vegetable found in the northern region of Thailand. A GI leaf extract has been developed as a dietary supplement for metabolic diabetic control. However, the active compounds in the GI leaf extract are relatively nonpolar. This study aimed to develop phytosome formulations of the GI extract to improve the efficiencies of their phytonutrients in terms of anti-inflammatory and anti-insulin-resistant activities in macrophages and adipocytes, respectively. Our results showed that the phytosomes assisted the GI extract's dispersion in an aqueous solution. The GI phytocompounds were assembled into a phospholipid bilayer membrane as spherical nanoparticles about 160-180 nm in diameter. The structure of the phytosomes allowed phenolic acids, flavonoids and triterpene derivatives to be embedded in the phospholipid membrane. The existence of GI phytochemicals in phytosomes significantly changed the particle's surface charge from neutral to negative within the range of -35 mV to -45 mV. The phytosome delivery system significantly exhibited the anti-inflammatory activity of the GI extract, indicated by the lower production of nitric oxide from inflamed macrophages compared to the non-encapsulated extract. However, the phospholipid component of phytosomes slightly interfered with the anti-insulin-resistant effects of the GI extract by decreasing the glucose uptake activity and increasing the lipid degradation of adipocytes. Altogether, the nano-phytosome is a potent carrier for transporting GI phytochemicals to prevent an early stage of T2DM.
Collapse
Affiliation(s)
- Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Ratchanon Inpan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Khan A, Shal B, Khan AU, Baig MW, Haq IU, Khan S. Withametelin, a steroidal lactone, isolated from datura innoxa attenuates STZ-induced diabetic neuropathic pain in rats through inhibition of NF-kB/MAPK signaling. Food Chem Toxicol 2023; 175:113742. [PMID: 36958385 DOI: 10.1016/j.fct.2023.113742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Diabetic neuropathic pain is one of the microvascular complications of diabetes mellitus characterized by symmetrical pain and sensory abnormalities. A steroidal lactone isolated from the datura innoxa plant, withametelin (WMT), exhibited significant neuroprotective, anti-inflammatory, antioxidant, and anticancer properties. The current study aimed to investigate anti-neuropathic pain activity and the molecular mechanism of WMT against streptozotocin (STZ)-induced diabetic neuropathy. Rats were given a single injection of STZ (60 mg/kg, intraperitoneally (i.p.)) for induction of diabetes on the first day of the study. After the onset of diabetic neuropathy, pregabalin (10 mg/kg, i.p.) and WMT (0.1 and 1 mg/kg, i.p.) treatments were started from day 14 up to day 42. It was found that STZ-induced neuropathic pain behaviors were markedly reduced by WMT. It inhibited the STZ-associated histopathological changes and genotoxicity in the sciatic nerve and spinal cord. Additionally, Fourier transforms infrared (FTIR) spectroscopy results revealed that STZ-induced alterations in the biochemical components of the sciatic nerve's myelin sheath were inhibited by WMT. In the spinal cord, it markedly reduced the immunoreactivity of mitogen-activated protein kinases (MAPKs) signaling components such as p38-MAPK, c-Jun N-terminal kinase (JNK), extracellular-signal-regulated-kinase (ERK), and activator-protein 1 (AP-1). It also reduced the expression levels of nuclear factor-kappa-B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). The production of inflammatory cytokines was considerably reduced by WMT. This study provides convincing evidence that WMT treatment attenuated STZ-induced diabetic neuropathic pain by inhibition of MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; DHQ Teaching Hospital Timergara, Lower Dir, KPK, Pakistan.
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan.
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
9
|
Ahmed OM, Abdel Fattah AA, Abdul-Hamid M, Abdel-Aziz AM, Sakr HI, Damanhory AA, Abdel-Kawi SH, Ghaboura N, Awad MMY. Antidiabetic and Liver Histological and Ultrastructural Effects of Cynara scolymus Leaf and Flower Head Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4223026. [PMID: 37163198 PMCID: PMC10164244 DOI: 10.1155/2023/4223026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/25/2023] [Accepted: 04/01/2023] [Indexed: 05/11/2023]
Abstract
This study aims to investigate the effect of hydroethanolic extracts of Cynara scolymus (C. scolymus) leaf (CLHE) and C. scolymus flower (CFHE) on the hepatic histopathological lesions and functional biochemical changes induced by type 2 diabetes mellitus (T2DM). The rat model of T2DM was induced by intraperitoneal injection of streptozotocin (STZ) in a dose of 60 mg/kg for 15 minutes following nicotinamide (NA) (60 mg/kg). The rats were allocated into four groups: group 1 (negative control), group 2 (diabetic control), group 3 (diabetic rats supplemented with 100 mg/kg/day CLHE), and group 4 (diabetic rats supplemented with 100 mg/kg/day CFHE). Treatment with CLHE and CFHE, for the study duration of 28 days, significantly improved the deteriorated hepatic glycogen content, glycogen phosphorylase, glucose-6-phosphatase activities, serum fructosamine levels, lipid profile, aspartate transaminase activities, and alanine transaminase activities as well as serum insulin and C-peptide levels. The elevated liver lipid peroxidation and the decreased activities of superoxide dismutase and glutathione peroxidase were significantly alleviated. The elevated expression of the proinflammatory cytokine tumor necrosis factor-α in the liver of diabetic rats was significantly reduced by treatments with CLHE and CFHE. NA/STZ-induced T2DM exhibited hepatic histopathological changes in the form of disordered hepatocytes, cytoplasm dissolution, and mononuclear leukocytic infiltration. The electron microscopic ultrastructure study revealed damaged mitochondria with ill-defined cristae and fragmentation of the rough endoplasmic reticulum. Treatments with CLHE and CFHE remarkably amended these histopathological and EM ultrastructural changes. In conclusion, both CLHE and CFHE may have antidiabetic and improvement effects on the liver function and structural integrity, which may be mediated, at least in part, via suppression of inflammation and oxidative stress and enhancement of the antioxidant defence system.
Collapse
Affiliation(s)
- Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. 62521, Beni-Suef, Egypt
| | - Asmaa A. Abdel Fattah
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. 62521, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. 62521, Beni-Suef, Egypt
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ahmed A. Damanhory
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Samraa H. Abdel-Kawi
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Moaaz M. Y. Awad
- Department of Anatomy, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Anatomy, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
10
|
Sayed HM, Awaad AS, Abdel Rahman FEZS, Al-Dossari M, Abd El-Gawaad NS, Ahmed OM. Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats. Pharmaceuticals (Basel) 2022; 16:34. [PMID: 36678531 PMCID: PMC9863970 DOI: 10.3390/ph16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to see how chrysin and/or bone marrow-derived mesenchymal stem cells (BM-MSCs) affected streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats as an animal model of type 2 diabetes mellitus (T2DM). Male Wistar rats were given a single intraperitoneal (i.p.) injection of 60 mg STZ/kg bodyweight (bw) 15 min after an i.p. injection of NA (120 mg/kg bw) to induce T2DM. The diabetic rats were given chrysin orally at a dose of 100 mg/kg bw every other day, BM-MSCs intravenously at a dose of 1 × 106 cells/rat/week, and their combination for 30 days after diabetes induction. The rats in the diabetic group displayed impaired oral glucose tolerance and a decrease in liver glycogen content and in serum insulin, C-peptide, and IL-13 levels. They also had significantly upregulated activities in terms of liver glucose-6-phosphatase and glycogen phosphorylase and elevated levels of serum free fatty acids, IL-1β, and TNF-α. In addition, the diabetic rats exhibited a significant elevation in the adipose tissue resistin protein expression level and a significant decrease in the expression of adiponectin, insulin receptor-beta subunit, insulin receptor substrate-1, and insulin receptor substrate-2, which were associated with a decrease in the size of the pancreatic islets and in the number of β-cells and insulin granules in the islets. The treatment of diabetic rats with chrysin and/or BM-MSCs significantly improved the previously deteriorated alterations, with chrysin combined with BM-MSCs being the most effective. Based on these findings, it can be concluded that combining chrysin with BM-MSCs produced greater additive therapeutic value than using them separately in NA/STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Hesham M. Sayed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| | - Ashraf S. Awaad
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | | | - M. Al-Dossari
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62521, Egypt
| |
Collapse
|
11
|
Ibrahim OHM, Al-Qurashi AD, Asiry KA, Mousa MAA, Alhakamy NA, Abo-Elyousr KAM. Investigation of Potential In Vitro Anticancer and Antimicrobial Activities of Balanites aegyptiaca (L.) Delile Fruit Extract and Its Phytochemical Components. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192621. [PMID: 36235487 PMCID: PMC9573292 DOI: 10.3390/plants11192621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 05/27/2023]
Abstract
The therapeutic importance of Balanites aegyptiaca in folk medicine for the treatment of several common human diseases has led researchers to conduct phytochemical and pharmacological studies on extracts from various parts of the plant. In the current study, the phytochemical composition of the B. aegyptiaca methanolic fruit extract was characterized, and its antimicrobial activity was evaluated together with the cytotoxic activity against MCF-7, PC-3, and Caco-2, compared with normal Vero cells. Further, its effects on cell cycle arrest, apoptosis induction and expression of apoptosis-related genes were assessed. The phytochemical screening revealed the presence of fatty acids and their esters in addition to phytosterols, steroid derivatives, and bioflavonoid glycosides with oleic and palmitic acids being the prevalent components (24.12 and 21.56%, respectively). The results showed considerable cytotoxic activity of the extract against the three cancer cell lines (MCF-7, PC-3, and Caco-2) with a selectivity index ranging from 5.07 to 6.52. This effect was further confirmed with the accompanied increased total apoptosis of treated PC-3 cells (19.22% of the total number of cells) compared to the control cells (0.64% of the total number of cells) with cell cycle arrest at G1 phase and the increased transcription of pro-apoptotic genes including P53 (3.69) and BAX (3.33) expressed as fold change (2^ ΔΔCT). The calculated minimum inhibitory concentration (MIC) was similar (62.5 µg/mL) against the three tested bacterial strains (Acinetobacter johnsonii, Serratia marcescens and Agrobacterium tumefaciens), while it was higher than 1000 µg/mL for the fungal species (Rhizoctonia solani, Penicillium italicum, and Fusarium oxysporium). Our findings suggest a promising anticancer activity for B. aegyptiaca, which paves the way for more detailed future studies.
Collapse
Affiliation(s)
- Omer H. M. Ibrahim
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel D. Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A. Asiry
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Magdi A. A. Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamal A. M. Abo-Elyousr
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022; 27:molecules27134278. [PMID: 35807526 PMCID: PMC9268530 DOI: 10.3390/molecules27134278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-1323-879720
| | - Samia Akther
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Nusrat Jahan Nujat
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | | |
Collapse
|
13
|
Aouadi K, Hajlaoui H, Arraouadi S, Ghannay S, Snoussi M, Kadri A. Phytochemical Profiling, Antimicrobial and α-Glucosidase Inhibitory Potential of Phenolic-Enriched Extracts of the Aerial Parts from Echium humile Desf.: In Vitro Combined with In Silico Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:1131. [PMID: 35567133 PMCID: PMC9105953 DOI: 10.3390/plants11091131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to evaluate the naturally occurring antimicrobial and antidiabetic potential of various Echium humile (E. humile) solvent extracts (hexane, dichloromethane, ethyl acetate, methanol and aqueous). The bioactive compounds were identified using HPLC-MS, revealing the presence of sixteen phytochemical compounds, with the most abundant being p-coumaric acid, followed by 4,5-di-O-caffeoylquinic acid, trans-ferulic acid and acacetin. Furthermore, E. humile extracts showed marked antimicrobial properties against human pathogen strains, with MIC values for the most relevant extracts (methanol and ethyl acetate) ranging from 0.19 to 6.25 mg/mL and 0.39 to 12.50 mg/mL, respectively. Likewise, methanol was found to be bactericidal towards S. aureus, B. cereus and M. luteus, fungicidal against P. catenulatum and F. oxysporum and have a bacteriostatic/fungicidal effect for the other strains. In addition, the E. humile methanolic extract had the greatest α-glucosidase inhibitory effect (IC50 = 0.06 ± 0.29 mg/mL), which is higher than the standard drug, acarbose (IC50 = 0.80 ± 1.81 mg/mL) and the aqueous extract (IC50 = 0.70 ± 0.67 mg/mL). A correlation study between the major phytochemicals and the evaluated activities was investigated. Docking studies evidenced that most of the identified phenolic compounds showed strong interactions into the binding sites of S. aureus tyrosyl-tRNA synthetase and human lysosomal acid-α-glucosidase, confirming their suitable inhibitory effect. In summary, these results may provide rational support to explore the clinical efficacy of E. humile and its secondary metabolites in the treatment of dual diabetes and infections.
Collapse
Affiliation(s)
- Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Hafedh Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, Campus University Agricultural City, University of Kairouan, Sidi Bouzid 9100, Tunisia;
| | - Soumaya Arraouadi
- Regional Center of Agricultural Research (CRRA) Sidi Bouzid, Gafsa Road Km 6, PB 357, Sidi Bouzid 9100, Tunisia;
- Research Laboratory, Valorization of Non-Conventional Waters, University of Carthage, Road Hedi EL Karray, El Menzah IV, PB 10, Ariana 2080, Tunisia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, Hail University, Ha’il 2440, Saudi Arabia;
- Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Bio-Technology of Monastir, University of Monastir, Avenue Taher Hadded, B.P. 74, Monastir 5000, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Faculty of Science and Arts in Baljurashi, Albaha University, Albaha 65527, Saudi Arabia
| |
Collapse
|
14
|
Rosinidin Flavonoid Ameliorates Hyperglycemia, Lipid Pathways and Proinflammatory Cytokines in Streptozotocin-Induced Diabetic Rats. Pharmaceutics 2022; 14:pharmaceutics14030547. [PMID: 35335923 PMCID: PMC8953600 DOI: 10.3390/pharmaceutics14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
Diabetes is one of the world’s most important public health issues, impacting both public health and socioeconomic advancement; moreover, current pharmacotherapy is still insufficient. The natural flavonoid rosinidin has a long history of use in pharmaceuticals and nutritional supplements, but its role in diabetes has been unknown. The current study was intended to confirm the anti-diabetic activity of rosinidin in our laboratory setting, along with its mechanism. Streptozotocin (60 mg/kg, ip) treatment used to induce type II diabetes in rats and the test medication rosinidin was then administered orally (at doses of 10 mg/kg and 20 mg/kg) for biochemical and histopathological analysis. Treatment with rosinidin reduced negative consequences of diabetes. Rosinidin exerted a protective effect on a number of characteristics, including anti-diabetic responses (lower blood glucose, higher serum insulin and improved pancreatic function) and molecular mechanisms (favorable effects on lipid profiles, total protein, albumin, liver glycogen, proinflammatory cytokine, antioxidant and oxidative stress markers, AST, ALT and urea). Furthermore, the improved pancreatic architecture observed in tissues substantiated the favourable actions of rosinidin in STZ-induced diabetic rats.
Collapse
|