1
|
Elkomy MH, Hendawy OM, Zaki RM, Tulbah AS, Aldosari BN, Ali AA, Eid HM. Intranasal trimethyl chitosan-coated emulsomes containing tizanidine as brain-targeted therapy in spasticity: formulation, optimization, and pharmacokinetic assessment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01753-0. [PMID: 39666261 DOI: 10.1007/s13346-024-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Tizanidine HCl (TZN) is an FDA-approved medication for treating spasticity. However, its oral administration presents obstacles to its efficacy, as it has a short duration of action and a low rate of absorption into the circulation (less than 40%) due to its rapid breakdown in the liver. In addition, its hydrophilic properties limit its capacity to cross the blood-brain barrier, thereby prohibiting it from reaching the central nervous system, where it can exert its intended therapeutic effects. Furthermore, diet-dependent absorption leads to fluctuations in bioavailability. Thus, this work aimed to create TZN-loaded chitosan-coated emulsomes (TZN-CTS-EMS) for intranasal administration, bypassing hepatic metabolism and boosting brain bioavailability. TZN-CTS-EMS were made using a thin film hydration approach. The influence of the independent parameters on the vesicle characteristics was examined and optimized using a Box-Behnken experimental methodology. The optimized formulation expected by the experimental design exhibited a greater desirability factor, characterized by a smaller particle size (127.63 nm), higher encapsulation efficiency (67.36%), and higher zeta potential (32.49 mV). As a result, it was chosen for additional in vivo assessment. Histopathological examinations showed no structural injury or toxicity to the nasal mucosa. Compared to intranasal TZN solution (TZN-SOL), the pharmacokinetics analysis demonstrated that intranasal TZN-CTS-EMS had a relative bioavailability of 191.9% in the plasma and 459.3% in the brain. According to these findings, intranasal administration of the optimized TZN-CTS-EMS may represent a viable, noninvasive substitute for effective TZN delivery to brain tissues, potentially leading to improved safety and pharmacological efficiency.
Collapse
Affiliation(s)
- Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia.
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Alaa S Tulbah
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, 21955, Makkah, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
2
|
Ibrahim MM, Basalious EB, El-Nabarawi MA, Makhlouf AI, Sayyed ME, Ibrahim IT. Nose to brain delivery of mirtazapine via lipid nanocapsules: Preparation, statistical optimization, radiolabeling, in vivo biodistribution and pharmacokinetic study. Drug Deliv Transl Res 2024; 14:2539-2557. [PMID: 38376620 PMCID: PMC11525427 DOI: 10.1007/s13346-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Mirtazapine (MZPc) is an antidepressant drug which is approved by the FDA. It has low bioavailability, which is only 50%, in spite of its rapid absorption when orally administered owing to high first-pass metabolism. This study was oriented towards delivering intranasal (IN) mirtazapine by a direct route to the brain by means of preparing lipid nanocapsules (LNCs) as a targeted drug delivery system. MZP-LNCs were constructed by solvent-free phase inversion temperature technique applying D-Optimal mixture design to study the impact of 3 formulation variables on the characterization of the formulated nanocapsules. Independent variables were percentage of Labrafac oil, percentage of Solutol and percentage of water. Dependent variables were particle size, polydispersity index (PDI), Zeta potential and solubilization capacity. Nanocapsules of the optimized formula loaded with MZP were of spherical shape as confirmed by transmission electron microscopy with particle diameter of 20.59 nm, zeta potential of - 5.71, PDI of 0.223 and solubilization capacity of 7.21 mg/g. The in vivo pharmacokinetic behavior of intranasal MZP-LNCs in brain and blood was correlated to MZP solution after intravenous (IV) and intranasal administration in mice. In vivo biodistribution of the drug in mice was assessed by a radiolabeling technique using radioiodinated mirtazapine (131I-MZP). Results showed that intranasal MZP-LNCs were able to deliver higher amount of MZP to the brain with less drug levels in blood when compared to the MZP solution after IV and IN administration. Moreover, the percentage of drug targeting efficiency (%DTE) of the optimized MZP-LNCs was 332.2 which indicated more effective brain targeting by the intranasal route. It also had a direct transport percentage (%DTP) of 90.68 that revealed a paramount contribution of the nose to brain pathway in the drug delivery to the brain.
Collapse
Affiliation(s)
- Mennatullah M Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amal Ia Makhlouf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Marwa Eid Sayyed
- Radio Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Ismail Taha Ibrahim
- Radio Labeled Compounds Department, Hot Labs Centre, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
- Faculty of Pharmacy, Albayan University, Baghdad, Iraq
| |
Collapse
|
3
|
Hamzah ML, Kassab HJ. Formulation and Characterization of Intranasal Drug Delivery of Frovatriptan-Loaded Binary Ethosomes Gel for Brain Targeting. Nanotechnol Sci Appl 2024; 17:1-19. [PMID: 38249545 PMCID: PMC10799622 DOI: 10.2147/nsa.s442951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Background Frovatriptan succinate (FVT) is an effective medication used to treat migraines; however, available oral formulations suffer from low permeability; accordingly, several formulations of FVT were prepared. Objective Prepare, optimize, and evaluate FVT-BE formulation to develop enhanced intranasal binary nano-ethosome gel.. Methods Binary ethosomes were prepared using different concentrations of phospholipid PLH90, ethanol, propylene glycol, and cholesterol by thin film hydration and characterized by particle size, zeta potential, and entrapment efficiency. Furthermore, in-vitro, in-vivo, ex-vivo, pharmacokinetics, and histopathological studies were done. Results Regarding FVT-loaded BE, formula (F9) demonstrated the best parameters from the other formulas; with the lowest particle size (154.1±4.38 nm), lowest PDI (0.213±0.05), highest zeta potential (-46.94±1.05), and highest entrapment efficiency (89.34±2.37%). Regarding gel formulation, G2 showed the best gel formula with drug content (99.82±0.02%) and spreadability (12.88 g/cm2). In-vitro study results showed that, in the first 30 minutes, around 22.3% of the medication is released, whereas, after 24 hours, about 98.56% is released in G2. Conclusion Based on enhancing the bioavailability and sustaining the drug release, it can be concluded that the Frovatriptan-Loaded Binary ethosome Gel as nano-delivery was developed as a promising non-invasive drug delivery system for treating migraine.
Collapse
Affiliation(s)
- Mohammed Layth Hamzah
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
- Department of Pharmaceutics, College of Pharmacy, Uruk University, Baghdad, Iraq
| | - Hanan Jalal Kassab
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
4
|
Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv 2023; 30:2163321. [PMID: 36579655 PMCID: PMC9809415 DOI: 10.1080/10717544.2022.2163321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lamotrigine. (LMT) is a triazine drug has an antiepileptic effect but with low water solubility, dissolution rate and thus therapeutic effect. Spanlastics are nano-vesicular carriers' act as site-specific drug delivery system. Intranasal route could direct the drug from nose to brain and provide a faster and more specific therapeutic effect. Therefore, this study aimed to upload lamotrigine onto nano-vesicles using spanlastic nasal insert delivery for effective epilepsy treatment via overcoming lamotrigine's low solubility and improving its bioavailability. Lamtrigine-loaded nano-spanlastic vesicles were prepared by ethanol injection method. To study different formulation factor's effect on formulations characters; particle size (PS), Zeta potential (ZP), polydispersity index (PDI), entrapment efficiency percentage (EE%) and LMT released amount after 6 h (Q6h); 2^1 and 3^1 full factorial designs were employed. Optimized formula was loaded in lyophilized nasal inserts formulation which were characterized for LMT release and mucoadhesion. Pharmacokinetics studies in plasma and brain were performed on rats to investigate drug targeting efficiency. The optimal nano-spanlastic formulation (F4; containing equal Span 60 amount (100 mg) and edge activator; Tween 80) exhibited nano PS (174.2 nm), high EE% (92.75%), and Q6h > 80%. The prepared nasal inserts (S4) containing 100 mg HPMC has a higher mucoadhesive force (9319.5 dyne/cm2) and dissolution rate (> 80% within 10 min) for rapid in vivo bio-distribution. In vivo studies showed considerable improvement brain and plasma's rate and extent absorption after intranasal administration indicating a high brain targeting efficiency. The results achieved indicate that nano-spanlastic nasal-inserts offer a promising LMT brain targeting in order to maximize its antiepileptic effect.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Hadel A. Abo El-Enin
- Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt,CONTACT Hadel A. Abo El-Enin Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt
| | - Ghada Abdelkader
- College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| | - Mohamed Abdel-Hakeem
- Department of pharmaceutical biotechnology, College of biotechnology, Misr University For Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
5
|
Abo El-Enin HA, Tulbah AS, Darwish HW, Salama R, Naguib IA, Yassin HA, Abdel-Bar HM. Evaluation of Brain Targeting and Antipsychotic Activity of Nasally Administrated Ziprasidone Lipid-Polymer Hybrid Nanocarriers. Pharmaceuticals (Basel) 2023; 16:886. [PMID: 37375832 DOI: 10.3390/ph16060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The feasibility of using lipid-polymer hybrid (LPH) nanocarriers as a potential platform for the intranasal delivery of ziprasidone (ZP), a second-generation antipsychotic, was explored. Different ZP-loaded LPH composed of a PLGA core and cholesterol-lecithin lipid coat were prepared using a single step nano-precipitation self-assembly technique. Modulation of polymer, lipid and drug amounts, as well as stirring-speed-optimized LPH with a particle size of 97.56 ± 4.55 nm and a ZP entrapment efficiency (EE%) of 97.98 ± 1.22%. The brain deposition and pharmacokinetics studies proved the efficiency of LPH to traverse the blood-brain barrier (BBB) following intranasal delivery with a 3.9-fold increase in targeting efficiency compared to the intravenous (IV) ZP solution with a direct nose-to-brain transport percentage (DTP) of 74.68%. The ZP-LPH showed enhanced antipsychotic activity in terms of animals' hypermobility over an IV drug solution in schizophrenic rats. The obtained results showed that the fabricated LPH was able to improve ZP brain uptake and proved its antipsychotic efficiency.
Collapse
Affiliation(s)
- Hadel A Abo El-Enin
- Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR) (Previously), Egyptian Drug Authority (Currently), Giza 12511, Egypt
| | - Alaa S Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rania Salama
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
- Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Heba A Yassin
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
6
|
Eita AS, M. A. Makky A, Anter A, Khalil IA. Repurposing of atorvastatin emulsomes as a topical antifungal agent. Drug Deliv 2022; 29:3414-3431. [DOI: 10.1080/10717544.2022.2149898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alaa S. Eita
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Amna M. A. Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October, Giza, Egypt
| |
Collapse
|
7
|
Tanigawa H, Suzuki N, Suzuki T. Application of ionic liquid to enhance the nose-to-brain delivery of etodolac. Eur J Pharm Sci 2022; 178:106290. [PMID: 36058500 DOI: 10.1016/j.ejps.2022.106290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to enhance the delivery of Etodolac (ETD) to the brain through intranasal administration using an ionic liquid (IL) consisting of ETD and proline ethyl ester. The IL of ETD was prepared by mixing ETD with proline ethyl ester as a counterion in a molar ratio of 1:2.The formation of the IL was confirmed by differential scanning calorimetry (DSC), infrared spectroscopy (IR) and proton nuclear magnetic resonance (1H-NMR).The solubility of ETD in simulated nasal fluids was improved by approximately 200-fold due to the formation of IL. The intranasal administration of ETD-containing IL, which is viscous, increased the nose-to-brain delivery by approximately 7-fold 30 min after an administration of the ETD solution alone. The enhancement of ETD delivery to the brain from the nose was attributed to the enhanced retention of ETD in the nasal mucosal surface due to the viscosity of IL. The induction of prostaglandin E2 in the brain inflammation that was induced by lipopolysaccharides was significantly suppressed by up to 40% in the IL-treated group compared with the drug-untreated group. Therefore, ETD-containing IL were suggested to be useful in designing intranasal formulations for the nasal delivery of ETDs to the brain.
Collapse
Affiliation(s)
- Hiroaki Tanigawa
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| | - Toyofumi Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|