1
|
van der Vloet L, Hilaire PBS, Bouillod C, Isin EM, Heeren RMA, Vandenbosch M. How can MSI enhance our understanding of ASO distribution? Drug Discov Today 2024; 30:104275. [PMID: 39701373 DOI: 10.1016/j.drudis.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
In the dynamic field of drug discovery and development, a comprehensive understanding of drug absorption, distribution, metabolism, excretion, and toxicity is crucial. Mass spectrometry imaging (MSI) has become a key analytical tool in the pharmaceutical industry, allowing evaluation of drug biodistribution and molecular profiles. Antisense oligonucleotides (ASOs) are emerging drug candidates for treating neurologic diseases. This review explores the potential of MSI in investigating ASOs' spatial distribution within neurological disease models. Here, we focus on multimodal molecular imaging to gain insights into ASO distribution, simultaneously with a better understanding of the molecular pathways affected by ASOs. An improved understanding of therapeutic ASOs in tissue will potentially improve neurologic therapies, emphasizing their importance in patient care.
Collapse
Affiliation(s)
- Laura van der Vloet
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | - Christophe Bouillod
- Institut de Recherche et Développement Servier Paris-Saclay, Rue Francis Perrin, 91190 Gif-sur-Yvette, France
| | - Emre M Isin
- Institut de Recherche et Développement Servier Paris-Saclay, Rue Francis Perrin, 91190 Gif-sur-Yvette, France
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
2
|
Lincy-Bianchi L, Häfner M, Becquart C, Tängemo C, Kurczy ME, Munier CC, Knerr L. Incorporation of Intracellular NanoSIMS Tracers to Oligonucleotide Conjugates via Strain Promoted Sydnone-Alkyne Cycloaddition. Bioconjug Chem 2024; 35:912-921. [PMID: 38860868 DOI: 10.1021/acs.bioconjchem.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Extensive efforts have been dedicated to developing cell-specific targeting ligands that can be conjugated to therapeutic cargo, offering a promising yet still challenging strategy to deliver oligonucleotide therapeutics beyond the liver. Indeed, while the cargo and the ligand are crucial, the third component, the linker, is integral but is often overlooked. Here, we present strain-promoted sydnone-alkyne cycloaddition as a versatile linker chemistry for oligonucleotide synthesis, expanding the choices for bioconjugation of therapeutics while enabling subcellular detection of the linker and payload using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging. This strategy was successfully applied to peptide and lipid ligands and profiled using the well characterized N-acetylgalactosamine (GalNAc) targeting ligand. The linker did not affect the expected activity of the conjugate and was detectable and distinguishable from the labeled cargo. Finally, this work not only offers a practical bioconjugation method but also enables the assessment of the linker's subcellular behavior, facilitating NanoSIMS imaging to monitor the three key components of therapeutic conjugates.
Collapse
Affiliation(s)
- Loujahine Lincy-Bianchi
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Maximilian Häfner
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Cécile Becquart
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Carolina Tängemo
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Michael E Kurczy
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Claire C Munier
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| |
Collapse
|
3
|
Yao S, Kasargod A, Chiu R, Torgerson TR, Kupiec-Weglinski JW, Dery KJ. The Coming Age of Antisense Oligos for the Treatment of Hepatic Ischemia/Reperfusion (IRI) and Other Liver Disorders: Role of Oxidative Stress and Potential Antioxidant Effect. Antioxidants (Basel) 2024; 13:678. [PMID: 38929116 PMCID: PMC11200799 DOI: 10.3390/antiox13060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Imbalances in the redox state of the liver arise during metabolic processes, inflammatory injuries, and proliferative liver disorders. Acute exposure to intracellular reactive oxygen species (ROS) results from high levels of oxidative stress (OxS) that occur in response to hepatic ischemia/reperfusion injury (IRI) and metabolic diseases of the liver. Antisense oligonucleotides (ASOs) are an emerging class of gene expression modulators that target RNA molecules by Watson-Crick binding specificity, leading to RNA degradation, splicing modulation, and/or translation interference. Here, we review ASO inhibitor/activator strategies to modulate transcription and translation that control the expression of enzymes, transcription factors, and intracellular sensors of DNA damage. Several small-interfering RNA (siRNA) drugs with N-acetyl galactosamine moieties for the liver have recently been approved. Preclinical studies using short-activating RNAs (saRNAs), phosphorodiamidate morpholino oligomers (PMOs), and locked nucleic acids (LNAs) are at the forefront of proof-in-concept therapeutics. Future research targeting intracellular OxS-related pathways in the liver may help realize the promise of precision medicine, revolutionizing the customary approach to caring for and treating individuals afflicted with liver-specific conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Affiliation(s)
- Gary Siuzdak
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA.
- Center for Metabolomics, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
6
|
Becquart C, Stulz R, Thomen A, Dost M, Najafinobar N, Dahlén A, Andersson S, Ewing AG, Kurczy ME. Intracellular Absolute Quantification of Oligonucleotide Therapeutics by NanoSIMS. Anal Chem 2022; 94:10549-10556. [PMID: 35830231 DOI: 10.1021/acs.analchem.2c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antisense oligonucleotide (ASO)-based therapeutics hold great potential for the treatment of a variety of diseases. Therefore, a better understanding of cellular delivery, uptake, and trafficking mechanisms of ASOs is highly important for early-stage drug discovery. In particular, understanding the biodistribution and quantifying the abundance of ASOs at the subcellular level are needed to fully characterize their activity. Here, we used a combination of electron microscopy and NanoSIMS to assess the subcellular concentrations of a 34S-labeled GalNAc-ASO and a naked ASO in the organelles of primary human hepatocytes. We first cross-validated the method by including a 127I-labeled ASO, finding that the absolute concentration of the lysosomal ASO using two independent labeling strategies gave matching results, demonstrating the strength of our approach. This work also describes the preparation of external standards for absolute quantification by NanoSIMS. For both the 34S and 127I approaches used for our quantification methodology, we established the limit of detection (5 and 2 μM, respectively) and the lower limit of quantification (14 and 5 μM, respectively).
Collapse
Affiliation(s)
- Cécile Becquart
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism CVRM, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Rouven Stulz
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43138 Gothenburg, Sweden
| | | | - Maryam Dost
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism CVRM, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Neda Najafinobar
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43138 Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43138 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Michael E Kurczy
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism CVRM, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| |
Collapse
|