1
|
Wongso H, Kurniawan A, Setiadi Y, Kusumaningrum CE, Widyasari EM, Wibawa TH, Mahendra I, Febrian MB, Sriyani ME, Halimah I, Daruwati I, Gunawan R, Achmad A, Nugraha DH, Lesmana R, Nugraha AS. Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers. Adv Pharm Bull 2024; 14:86-104. [PMID: 38585455 PMCID: PMC10997928 DOI: 10.34172/apb.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The translocator protein 18-kDa (TSPO) is a mitochondrial membrane protein that is previously identified as the peripheral benzodiazepine receptor (PBR). Furthermore, it plays a significant role in a diverse range of biochemical processes, including steroidogenesis, mitochondrial cholesterol transport, cell survival and death, cell proliferation, and carcinogenesis. Several investigations also reported its roles in various types of cancers, including colorectal, brain, breast, prostate, and lung cancers, as well as melanoma. According to a previous study, the expression of TSPO was upregulated in cancer cells, which corresponds to an aggressive phenotype and/or poor prognosis. Consequently, the potential for crafting diagnostic and prognostic tools with a focus on TSPO holds great potential. In this context, several radioligands designed to target this protein have been identified, and some of the candidates have advanced to clinical trials. In recent years, the use of hybrid probes with radioactive and fluorescence molecules for image-guided surgery has exhibited promising results in animal and human studies. This indicates that the approach can serve as a valuable surgical navigator during cancer surgery. The current hybrid probes are built from various molecular platforms, including small molecules, nanoparticles, and antibodies. Although several TSPO-targeted imaging probes have been developed, their development for image-guided surgery of cancers is still limited. Therefore, this review aims to highlight recent findings on the involvement of TSPO in carcinogenesis, as well as provide a new perspective on the potential application of TSPO-targeted hybrid probes for image-guided surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Crhisterra E. Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isti Daruwati
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Rudi Gunawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Arifudin Achmad
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari S. Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
2
|
Yun WS, Cho H, Jeon SI, Lim DK, Kim K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023; 13:1787. [PMID: 38136656 PMCID: PMC10742164 DOI: 10.3390/biom13121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The advancement of stem cell therapy has offered transformative therapeutic outcomes for a wide array of diseases over the past decades. Consequently, stem cell tracking has become significant in revealing the mechanisms of action and ensuring safe and effective treatments. Fluorescence stands out as a promising choice for stem cell tracking due to its myriad advantages, including high resolution, real-time monitoring, and multi-fluorescence detection. Furthermore, combining fluorescence with other tracking modalities-such as bioluminescence imaging (BLI), positron emission tomography (PET), photoacoustic (PA), computed tomography (CT), and magnetic resonance (MR)-can address the limitations of single fluorescence detection. This review initially introduces stem cell tracking using fluorescence imaging, detailing various labeling strategies such as green fluorescence protein (GFP) tagging, fluorescence dye labeling, and nanoparticle uptake. Subsequently, we present several combinations of strategies for efficient and precise detection.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| |
Collapse
|
3
|
Wongso H, Kurniawan A, Forentin AM, Susilo VY, Setiadi Y, Mahendra I, Febrian MB, Rosdianto AM, Setiawan I, Goenawan H, Susianti S, Supratman U, Widyasari EM, Wibawa TH, Sriyani ME, Halimah I, Lesmana R. New hybrid radio-fluorescent probes [ 131I]-BPF-01 and [ 131I]-BPF-02 for visualisation of cancer cells: Synthesis and preliminary in vitro and ex vivo evaluations. Heliyon 2023; 9:e20710. [PMID: 37860547 PMCID: PMC10582398 DOI: 10.1016/j.heliyon.2023.e20710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
We synthesised and biologically evaluated two new hybrid probes [131I]BPF-01 and [131I]BPF-02 which were built from three structural entities: benzothiazole-phenyl, fluorescein isothiocyanate (FITC), and iodine-131. These probes were designed for potential applications in assisting surgical procedures of solid cancers. The cytotoxicity study demonstrated that fluorescent probes BPF-01 (31.23 μg/mL) and BPF-02 (250 μg/mL) were relatively not toxic to normal immortalized human keratinocytes (HaCaT) cells, as indicated by the percentage of cell survival above 50 %. Furthermore, both probes displayed low to moderate anticancer activity against the breast cancer cells (MDA-MB-231) and prostate cancer cells (LNCaP and DU-145). The probe BPF-01 apparently showed an accumulation in the tumour tissues, as suggested by ex vivo fluorescence examinations. In addition, the cellular uptake study suggests that hybrid probe [131I]-BPF-01 was potentially accumulated in the MCF-7 cell line with the highest uptake of 16.11 ± 1.52 % after 2 h of incubation, approximately 50-fold higher than the accumulation of iodine-131 (control). The magnetic bead assay suggests that [131I]-BPF-02 and [131I]-BPF-02 showed a promising capability to interact with translocator protein 18 kDa (TSPO). Moreover, the computational data showed that the binding scores for ligands 7-8, BPF-01 and BPF-02, and [131I]-BPF-01 and [131I]-BPF-02 in the TSPO were considerably high. Accordingly, fluorescent probes BPF-01 and BPF-02, and hybrid probes [131I]BPF-01 and [131I]BPF-02 can be further developed for targeting cancer cells during intraoperative tumour surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Alfian M. Forentin
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Veronika Y. Susilo
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Aziiz M. Rosdianto
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Setiawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Unang Supratman
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
4
|
Wongso H, Hendra R, Nugraha AS, Ritawidya R, Saptiama I, Kusumaningrum CE. Microbial metabolites diversity and their potential as molecular template for the discovery of new fluorescent and radiopharmaceutical probes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Wongso H. Recent progress on the development of fluorescent probes targeting the translocator protein 18 kDa (TSPO). Anal Biochem 2022; 655:114854. [PMID: 35963341 DOI: 10.1016/j.ab.2022.114854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 11/01/2022]
Abstract
The translocator protein 18 kDa (TSPO) was first identified in 1997, and has now become one of the appealing subcellular targets in medicinal chemistry and its related fields. TSPO involves in a variety of diseases, covering neurodegenerative diseases, psychiatric disorders, cancers, and so on. To date, various high-affinity TSPO ligands labelled with single-photon emission computed tomography (SPECT)/positron emission tomography (PET) radionuclides have been reported, with some third-generation radioligands advanced to clinical trials. On the other hand, only a few number of TSPO ligands have been labelled with fluorophores for disease diagnosis. It is noteworthy that the majority of the TSPO fluorescent probes synthesised to date are based on visible fluorophores, suggesting that their applications are limited to in vitro studies, such as in vitro imaging of cancer cells, post-mortem analysis, and tissue biopsies examinations. In this context, the potential application of TSPO ligands can be broadened for in vivo investigations of human diseases by labelling with near-infrared (NIR)-fluorophores or substituting visible fluorophores with NIR-fluorophores on the currently developed fluorescent probes. In this review article, recent progress on fluorescent probes targeting the TSPO are summarised, with an emphasis on development trend in recent years and application prospects in the future.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
| |
Collapse
|