1
|
Carrasco CJ, Montilla F, Villalobo E, Angulo M, Álvarez E, Galindo A. Antimicrobial Activity of Anionic Bis( N-Heterocyclic Carbene) Silver Complexes. Molecules 2024; 29:4608. [PMID: 39407538 PMCID: PMC11478204 DOI: 10.3390/molecules29194608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The antimicrobial properties of a series of anionic bis(carbene) silver complexes Na3[Ag(NHCR)2] were investigated (2a-2g and 2c', where NHCR is a 2,2'-(imidazol-2-ylidene)dicarboxylate-type N-heterocyclic carbene). The complexes were synthesized by the interaction of imidazolium dicarboxylate compounds with silver oxide in the presence of aqueous sodium hydroxide. Complexes 2f,g were characterized analytically and spectroscopically, and the ligand precursor 1f and complexes 2c and 2g were structurally identified by X-ray diffraction methods. The anions of 2c and 2g, [Ag(NHCR)2]3-, showed a typical linear disposition of Ccarbene-Ag-Ccarbene atoms and an uncommonly eclipsed conformation of carbene ligands. The antimicrobial properties of complexes 2a-g, which contains chiral (2b-2e and 2c') and non-chiral derivatives (2a,f,g), were evaluated against Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and a Gram-positive bacterium, Staphylococcus aureus. From the observed values of the minimal inhibitory concentration and minimal bactericidal concentration, complexes 2a and 2b showed the best antimicrobial activity against all strains. An interesting chirality-antimicrobial relationship was found, and eutomer 2c' showed better activity than its enantiomer 2c against the three bacteria. Furthermore, these complexes were investigated experimentally and theoretically by 109Ag nuclear magnetic resonance, and the electronic and steric characteristics of the dianionic carbene ligands were also examined.
Collapse
Affiliation(s)
- Carlos J. Carrasco
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Francisco Montilla
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Manuel Angulo
- Servicio de Resonancia Magnética Nuclear, CITIUS, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
2
|
Isbel SR, Patil SA, Bugarin A. NHCs silver complexes as potential antimicrobial agents. Inorganica Chim Acta 2024; 563:121899. [PMID: 38292701 PMCID: PMC10824532 DOI: 10.1016/j.ica.2023.121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
NHCs (N-heterocyclic carbenes) are generally used as organic ligands that can coordinate with metal ions like silver to form stable complexes. These complexes have shown enhanced antimicrobial properties compared to silver alone. This document provides an overview of the reported NHC-based silver derivatives (acetates, chlorides, bromides, and iodides) who possess antimicrobial activity. This review covers articles published between the first report (2006) and 2023.
Collapse
Affiliation(s)
- Stephen R. Isbel
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Siddappa A. Patil
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA
- Centre for Nano & Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| |
Collapse
|
3
|
Martínez G, Begines B, Pajuelo E, Vázquez J, Rodriguez-Albelo LM, Cofini D, Torres Y, Alcudia A. Versatile Biodegradable Poly(acrylic acid)-Based Hydrogels Infiltrated in Porous Titanium Implants to Improve the Biofunctional Performance. Biomacromolecules 2023; 24:4743-4758. [PMID: 37677155 PMCID: PMC10646965 DOI: 10.1021/acs.biomac.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/27/2023] [Indexed: 09/09/2023]
Abstract
This research work proposes a synergistic approach to improve implants' performance through the use of porous Ti substrates to reduce the mismatch between Young's modulus of Ti (around 110 GPa) and the cortical bone (20-25 GPa), and the application of a biodegradable, acrylic acid-based polymeric coating to reduce bacterial adhesion and proliferation, and to enhance osseointegration. First, porous commercially pure Ti substrates with different porosities and pore size distributions were fabricated by using space-holder techniques to obtain substrates with improved tribomechanical behavior. On the other hand, a new diacrylate cross-linker containing a reduction-sensitive disulfide bond was synthesized to prepare biodegradable poly(acrylic acid)-based hydrogels with 1, 2, and 4% cross-linker. Finally, after the required characterization, both strategies were implemented, and the combination of 4% cross-linked poly(acrylic acid)-based hydrogel infiltrated in 30 vol % porosity, 100-200 μm average pore size, was revealed as an outstanding choice for enhancing implant performance.
Collapse
Affiliation(s)
- Guillermo Martínez
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Belén Begines
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Eloisa Pajuelo
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Juan Vázquez
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville 41004, Spain
| | - Luisa Marleny Rodriguez-Albelo
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte,
Escuela Politécnica Superior, Universidad
de Sevilla, Seville 41011, Spain
| | - Davide Cofini
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| | - Yadir Torres
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte,
Escuela Politécnica Superior, Universidad
de Sevilla, Seville 41011, Spain
| | - Ana Alcudia
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, Seville 41012, Spain
| |
Collapse
|
4
|
Martínez G, Vázquez J, Begines B, Alcudia A. Emerging Strategies to Improve the Design and Manufacturing of Biocompatible Therapeutic Materials. Pharmaceutics 2023; 15:1938. [PMID: 37514123 PMCID: PMC10383592 DOI: 10.3390/pharmaceutics15071938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, the field of medicine is drastically advancing, mainly due to the progress in emerging areas such as nanomedicine, regenerative medicine, and personalized medicine. For example, the development of novel drug delivery systems in the form of nanoparticles is improving the liberation, absorption, distribution, metabolism, and excretion (LADME) properties of the derived formulations, with a consequent enhancement in the treatment efficacy, a reduction in the secondary effects, and an increase in compliance with the dosage guidelines. Additionally, the use of biocompatible scaffolds is translating into the possibility of regenerating biological tissues. Personalized medicine is also benefiting from the advantages offered by additive manufacturing. However, all these areas have in common the need to develop novel materials or composites that fulfill the requirements of each application. Therefore, the aim of this Special Issue was to identify novel materials/composites that have been developed with specific characteristics for the designed biomedical application.
Collapse
Affiliation(s)
- Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Vázquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Ronga L, Varcamonti M, Tesauro D. Structure-Activity Relationships in NHC-Silver Complexes as Antimicrobial Agents. Molecules 2023; 28:molecules28114435. [PMID: 37298911 DOI: 10.3390/molecules28114435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Silver has a long history of antimicrobial activity and received an increasing interest in last decades owing to the rise in antimicrobial resistance. The major drawback is the limited duration of its antimicrobial activity. The broad-spectrum silver containing antimicrobial agents are well represented by N-heterocyclic carbenes (NHCs) silver complexes. Due to their stability, this class of complexes can release the active Ag+ cations in prolonged time. Moreover, the properties of NHC can be tuned introducing alkyl moieties on N-heterocycle to provide a range of versatile structures with different stability and lipophilicity. This review presents designed Ag complexes and their biological activity against Gram-positive, Gram-negative bacteria and fungal strains. In particular, the structure-activity relationships underlining the major requirements to increase the capability to induce microorganism death are highlighted here. Moreover, some examples of encapsulation of silver-NHC complexes in polymer-based supramolecular aggregates are reported. The targeted delivery of silver complexes to the infected sites will be the most promising goal for the future.
Collapse
Affiliation(s)
- Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Mario Varcamonti
- Department of Biology, University of Naples "Federico II", Via Cynthia, 80143 Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
6
|
Şahin N, Çelebi MS, Ayvaz MÇ, Üstün E. Antioxidant Activity, Enzyme Inhibition, Electrochemical and Theoretical Evaluation of Novel PEPPSI Type N-Heterocyclic Carbene Complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Carrasco CJ, Montilla F, Álvarez E, Calderón-Montaño JM, López-Lázaro M, Galindo A. Chirality influence on the cytotoxic properties of anionic chiral bis(N-heterocyclic carbene)silver complexes. J Inorg Biochem 2022; 235:111924. [PMID: 35841721 DOI: 10.1016/j.jinorgbio.2022.111924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Complexes Na3[Ag(NHCR)2], 2a-e and 2b'-c', where NHCR is a N-heterocyclic carbene of the 2,2'-(1H-2λ3,3λ4-imidazole-1,3-diyl)dicarboxylate type, were prepared by treatment of compounds HLR, 1a-e and 1b'-c' (2-(1-(carboxyalkyl)-1H-imidazol-3-ium-3-yl)carboxylate), with silver oxide in the presence of aqueous sodium hydroxide. They were characterized by analytical, spectroscopic (infrared, IR, 1H and 13C nuclear magnetic resonance, NMR, and circular dichroism) and X-ray methods (2a). In the solid state, the anionic part of complex 2a, [Ag(NHCH)2]3-, shows a linear disposition of Ccarbene-Ag-Ccarbene atoms and an eclipsed conformation of the two NHC ligands. The proposed bis(NHC) nature of the silver complexes was maintained in solution according to NMR and density functional theory (DFT) calculations. The cytotoxic activity of compounds 2 was evaluated against four cancer cell lines and one non-cancerous cell line and several structure-activity correlations were found for these complexes. For instance, the activity decreased when the bulkiness of the R alkyl group in Na3[Ag(NHCR)2] increased. More interesting is the detected chirality-anticancer relationship, where complexes Na3[Ag{(S,S)-NHCR}2] (R = Me, 2b; iPr, 2c) showed better anticancer activity than those of their enantiomeric derivatives Na3[Ag{(R,R)-NHCR}2] (R = Me, 2b'; iPr, 2c').
Collapse
Affiliation(s)
- Carlos J Carrasco
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| | - Francisco Montilla
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | | | - Miguel López-Lázaro
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain.
| |
Collapse
|
8
|
Varna D, Geromichalou E, Hatzidimitriou AG, Papi R, Psomas G, Dalezis P, Aslanidis P, Choli-Papadopoulou T, Trafalis DT, Angaridis PA. Silver(I) complexes bearing heterocyclic thioamide ligands with NH 2 and CF 3 substituents: effect of ligand group substitution on antibacterial and anticancer properties. Dalton Trans 2022; 51:9412-9431. [PMID: 35674362 DOI: 10.1039/d2dt00793b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been an increasing interest in the study of Ag(I) coordination compounds as potent antibacterial and anticancer agents. Herein, a series of Ag(I) complexes bearing phosphines and heterocyclic thioamide ligands with highly electronegative NH2- and CF3-group substituents, i.e. [AgCl(atdztH)(xantphos)] (1), [Ag(μ-atdztH)(DPEphos)]2(NO3)2 (2), [Ag(atdzt)(PPh3)3] (3), [Ag(μ-atdzt)(DPEphos)]2 (4), and [Ag(μ-mtft)(DPEphos)]2 (5), where atdztH = 5-amino-1,3,4-thiadiazole-2-thiol, mtftH = 4-methyl-5-(trifluoromethyl)-1,2,4-triazol-3-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and DPEphos = bis(2-diphenylphosphino-phenyl)ether, were synthesized, and their in vitro antibacterial and anticancer properties were evaluated. Complexes 1-4 bearing the NH2-substituted thioamide exhibited moderate-to-high activity against S. aureus, B. subtilis, B. cereus and E. coli bacterial strains. A high antiproliferative activity was also observed for 1-3 against SKOV-3, Hup-T3, DMS114 and PC3 cancer cell lines (IC50 = 4.0-11.7 μM), as well as some degree of selectivity against MRC-5 normal cells. Interestingly, 5 bearing the CF3-substituted thioamide is completely inactive in all bioactivity studies. Binding of 1-3 to drug-carrier proteins BSA and HSA is reasonably strong for their uptake and subsequent release to possible target sites. The three complexes show a significant in vitro antioxidant ability for scavenging free radicals, suggesting likely implication of this property in the mechanism of their bioactivity, but a low potential to destroy the double-strand structure of CT-DNA by intercalation. Complementary insights into possible bioactivity mechanisms were provided by molecular docking calculations, exploring the ability of complexes to bind to bacterial DNA gyrase, and to the overexpressed in the aforementioned cancer cells Fibroblast Growth Factor Receptor 1, affecting their functionalities.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|