1
|
Chen MM, Lin S, Wang ZH, Zhang SX, Chen FY, Chen J, Guo DS, Meng Q. Sulfonated Azocalix[4]arene: A Universal and Effective Taste-Masking Agent. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53591-53598. [PMID: 39316639 DOI: 10.1021/acsami.4c13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Many active pharmaceutical ingredients have a specific bitter taste. To enhance patient compliance and treatment efficacy, taste-masking agents are crucial in oral drug formulations. Confronting numerous bitter drug molecules with varied structures, the pharmaceutical field strives to explore and develop universal and effective masking approaches. Here, we reported sulfonated azocalix[4]arene (SAC4A), a universal supramolecular masking agent with deep cavity that provides stronger hydrophobic effect and larger interaction area during recognition, allowing high binding affinity to bitter drug molecules. Moreover, bitter drugs could deeply buried in the cavity, with the bitterness effectively masked. As a result, SAC4A can bind to 16 different bitter drugs with high affinities, encompassing alkaloids, flavonoids, terpenoids, and more, while maintaining high biocompatibility. As anticipated, SAC4A effectively masks the unpalatable bitter taste associated with these drugs. Consequently, SAC4A is a promising universal and effective supramolecular masking agent.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shujie Lin
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shu-Xin Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Junyi Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Qingbin Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
2
|
D'Amico V, Denora N, Ivone M, Iacobazzi RM, Laquintana V, Cutrignelli A, Franco M, Barone M, Lopalco A, Lopedota AA. Investigating the prilling/vibration technique to produce gastric-directed drug delivery systems for misoprostol. Int J Pharm 2024; 651:123762. [PMID: 38185338 DOI: 10.1016/j.ijpharm.2023.123762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Prilling/vibration technique to produce oral microcapsules was explored to achieve local delivery of misoprostol (MIS), a prostaglandin E1 analogue indicated for the treatment of gastric-duodenal ulcers, at the gastric mucosa. To improve MIS chemical stability and reduce its associated systemic side effects, drug delivery systems were designed and developed as microcapsules consisting of a core of sunflower oil and MIS (Fs6 and Fs14) or a MIS complex with hydroxypropyl-beta-cyclodextrin (HP-β-CD) (Fs18), confirmed by specific studies, and a polymeric shell. The produced microcapsules showed high encapsulation efficiencies for those with MIS solubilized in sunflower oil (>59.86 %) and for the microcapsules with MIS/HP-β-CD (97.61 %). To demonstrate the ability of these systems to deliver MIS into the stomach, swelling and drug release experiments were also conducted in simulated gastric fluid. Among the three formulations, FS18 showed gastric release within 30 min and was the most advantageous formulation because the presence of the MIS/HP-β-CD inclusion complex ensured a greater ability to stabilise MIS in the simulated gastric environment. In addition, these new systems have a small size (<540 µm), and good flow properties and the dose of the drug could be easily adapted using different amounts of microcapsules (flexibility), making them a passepartout for different age population groups.
Collapse
Affiliation(s)
- Vita D'Amico
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| | - Marianna Ivone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| | - Massimo Franco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| | - Michele Barone
- Gastroenterology Unit, Department of Precision and Regenerative Medicine-Jonian Area-(DiMePRe-J), University of Bari "Aldo Moro", Policlinic University Hospital, 11 G. Cesare Square, 70124 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 E. Orabona street, 70125 Bari, Italy
| |
Collapse
|
3
|
Adamkiewicz L, Szeleszczuk Ł. Review of Applications of Cyclodextrins as Taste-Masking Excipients for Pharmaceutical Purposes. Molecules 2023; 28:6964. [PMID: 37836807 PMCID: PMC10574773 DOI: 10.3390/molecules28196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
It is widely recognized that many active pharmaceutical ingredients (APIs) have a disagreeable taste that affects patient acceptability, particularly in children. Consequently, developing dosage forms with a masked taste has attracted a lot of interest. The application of cyclodextrins as pharmaceutical excipients is highly appreciated and well established, including their roles as drug delivery systems, solubilizers and absorption promoters, agents that improve drug stability, or even APIs. The first work describing the application of the taste-masking properties of CDs as pharmaceutical excipients was published in 2001. Since then, numerous studies have shown that these cyclic oligosaccharides can be effectively used for such purposes. Therefore, the aim of this review is to provide insight into studies in this area. To achieve this aim, a systematic evaluation was conducted, which resulted in the selection of 67 works representing both successful and unsuccessful works describing the application of CDs as taste-masking excipients. Particular attention has been given to the methods of evaluation of the taste-masking properties and the factors affecting the outcomes, such as the choice of the proper cyclodextrin or guest-host molar ratio. The conclusions of this review reveal that the application of CDs is not straightforward; nevertheless, this solution can be an effective, safe, and inexpensive method of taste masking for pharmaceutical purposes.
Collapse
Affiliation(s)
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland;
| |
Collapse
|
4
|
Ranmal SR, Lavarde M, Wallon E, Issa S, Taylor WR, Nguyen Ngoc Pouplin JLA, Tuleu C, Pensé-Lhéritier AM. Responsive Sensory Evaluation to Develop Flexible Taste-Masked Paediatric Primaquine Tablets against Malaria for Low-Resource Settings. Pharmaceutics 2023; 15:1879. [PMID: 37514065 PMCID: PMC10385610 DOI: 10.3390/pharmaceutics15071879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Primaquine is an important antimalarial drug for malaria transmission blocking and radical cure, but it is not currently available in child-friendly formulations in appropriate doses. Adult-strength tablets are often crushed and dissolved in water to obtain the required dose, which exposes the drug's bitter taste. As part of the developing paediatric primaquine (DPP) project, this study adopted a responsive sensory pharmaceutics approach by integrating real-time formulation development and pre-clinical taste assessment to develop palatable, flavour-infused primaquine tablets. A design of experiment (DoE) approach was used to screen different taste-masking agents and excipient blends with trained, expert sensory assessors, with quinine hydrochloride as a model bitter tastant. The taste-masking efficacy of selected prototype formulation blends was validated with naïve assessors using the highest 15 mg primaquine dose. The mean bitterness intensity rating, measured on a discrete 11-point scale, was halved from 7.04 for the unflavoured control to 2.74-3.70 for the formulation blends. Sucralose had the biggest impact on bitterness suppression and improving palatability. Two different flavouring systems have been developed, and their acceptability in paediatric patients will be assessed as part of upcoming validation field clinical trials in Africa.
Collapse
Affiliation(s)
- Sejal R Ranmal
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Marc Lavarde
- Ecole de Biologie Industrielle-EBI, UPR EBInnov®, 49 Avenue des Genottes CS90009, 95895 Cergy, France
| | - Elodie Wallon
- Ecole de Biologie Industrielle-EBI, UPR EBInnov®, 49 Avenue des Genottes CS90009, 95895 Cergy, France
| | - Samar Issa
- Ecole de Biologie Industrielle-EBI, UPR EBInnov®, 49 Avenue des Genottes CS90009, 95895 Cergy, France
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | | | - Catherine Tuleu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|
5
|
Sun X, Li Y, Yu H, Jin X, Ma X, Cheng Y, Wei Y, Wang Y. Evaluation on the inclusion behavior of β-cyclodextrins with lycorine and its hydrochloride. J Mol Liq 2023; 379:121658. [PMID: 36969830 PMCID: PMC10023205 DOI: 10.1016/j.molliq.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Lycorine (Lyc) and its hydrochloride (Lyc∙HCl) as effective drugs can fight against many diseases including novel coronavirus (COVID-19) based on their antiviral and antitumor mechanism. Beta-cyclodextrin (β-CD) is considered a promising carrier in improving its efficacy while minimizing cytotoxicity due to the good spatial compatibility with Lyc. However, the detailed mechanism of inclusion interaction still remains to be further evaluated. In this paper, six inclusion complexes based on β-CDs, Lyc and Lyc∙HCl were processed through ultrasound in the mixed solvent of ethanol and water, and their inclusion behavior was characterized after lyophilization. It was found that the inclusion complexes based on sulfobutyl-beta-cyclodextrin (SBE-β-CD) and Lyc∙HCl had the best encapsulation effect among prepared inclusion complexes, which may be attributed to the electrostatic interaction between sulfonic group of SBE-β-CD and quaternary amino group of Lyc∙HCl. Moreover, the complexes based on SBE-β-CD displayed pH-sensitive drug release property, good solubilization, stability and blood compatibility, indicating their potential as suitable drug carriers for Lyc and Lyc∙HCl.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yuan Li
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoning Jin
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, 300354, China
| |
Collapse
|
6
|
Querin B, Schweitzer-Chaput A, Cisternino S, Auvity S, Fauqueur AS, Negbane A, Hadchouel A, Schlatter J, Cotteret C. Pharmaceutical Oral Formulation of Methionine as a Pediatric Treatment in Inherited Metabolic Disease. Pharmaceutics 2023; 15:pharmaceutics15030957. [PMID: 36986818 PMCID: PMC10056843 DOI: 10.3390/pharmaceutics15030957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
L-Methionine (Met) is an essential alpha-amino acid playing a key role in several metabolic pathways. Rare inherited metabolic diseases such as mutations affecting the MARS1 gene encoding methionine tRNA synthetase (MetRS) can cause severe lung and liver disease before the age of two years. Oral Met therapy has been shown to restore MetRS activity and improve clinical health in children. As a sulfur-containing compound, Met has a strongly unpleasant odor and taste. The objective of this study was to develop an optimized pediatric pharmaceutical formulation of Met powder, to be reconstituted with water, to obtain a stable oral suspension. Organoleptic characteristics and physicochemical stability of the powdered Met formulation and suspension were evaluated at three storage temperatures. Met quantification was assessed by a stability-indicating chromatographic method as well as microbial stability. The use of a specific fruit flavor (e.g., strawberry) with sweeteners (e.g., sucralose) was considered acceptable. No drug loss, pH changes, microbiological growth, or visual changes were observed at 23 ± 2 °C and 4 ± 2 °C with the powder formulation for 92 days, and the reconstituted suspension for at least 45 days. The developed formulation facilitates the preparation, administration, the dose adjustment and palatability of Met treatment in children.
Collapse
Affiliation(s)
- Benjamin Querin
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
| | - Arnaud Schweitzer-Chaput
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
| | - Salvatore Cisternino
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
- Université Paris Cité, Inserm UMRS 1144, Faculté de Pharmacie, 4, Avenue de l’Observatoire, F-75006 Paris, France
- Correspondence: ; Tel.: +33-1-44-495-191
| | - Sylvain Auvity
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
- Université Paris Cité, Inserm UMRS 1144, Faculté de Pharmacie, 4, Avenue de l’Observatoire, F-75006 Paris, France
| | - Anne-Sophie Fauqueur
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
| | - Abdel Negbane
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
| | - Alice Hadchouel
- Service de Pneumologie Pédiatrique, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris, AP-HP, 149 rue de Sèvres, F-75015 Paris, France
- Institut Necker Enfants Malades (INEM), INSERM U1151, Faculté de Médecine, Université Paris Cité, 156 rue de Vaugirard, F-75015 Paris, France
| | - Joël Schlatter
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
- Service Pharmacie, Hôpital Paul Doumer, Assistance Publique des Hôpitaux de Paris, AP-HP, 1 rue de l’hôpital, F-60140 Labruyère, France
| | - Camille Cotteret
- Service Pharmacie, Hôpital Universitaire Necker—Enfants Malades, Assistance Publique des Hôpitaux de Paris (AP-HP), 149 rue de Sèvres, F-75015 Paris, France
| |
Collapse
|
7
|
Aurisin A Complexed with 2,6-Di- O-methyl-β-cyclodextrin Enhances Aqueous Solubility, Thermal Stability, and Antiproliferative Activity against Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23179776. [PMID: 36077178 PMCID: PMC9456185 DOI: 10.3390/ijms23179776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aurisin A (AA), an aristolane dimer sesquiterpene isolated from the luminescent mushroom Neonothopanus nambi, exhibits various biological and pharmacological effects. However, its poor solubility limits its use for further medicinal applications. This study aimed to improve the water solubility of AA via complexation with β-cyclodextrin (βCD) and its derivatives (2,6-di-O-methyl-βCD (DMβCD) and 2-hydroxypropyl-βCD (HPβCD). A phase solubility analysis demonstrated that the solubility of AA linearly enhanced with increasing concentrations of βCDs (ranked in the order of AA/DMβCD > AA/HPβCD > AA/βCD). Notably, βCDs, especially DMβCD, increased the thermal stability of the inclusion complexes. The thermodynamic study indicated that the complexation between AA and βCD(s) was a spontaneous endothermic reaction, and AA/DMβCD possesses the highest binding strength. The complex formation between AA and DMβCD was confirmed by means of FT-IR, DSC, and SEM. Molecular dynamics simulations revealed that the stability and compactness of the AA/DMβCD complex were higher than those of the DMβCD alone. The encapsulation of AA led to increased intramolecular H-bond formations on the wider rim of DMβCD, enhancing the complex stability. The antiproliferative activity of AA against A549 and H1975 lung cancer cells was significantly improved by complexation with DMβCD. Altogether, the satisfactory water solubility, high thermal stability, and enhanced antitumor potential of the AA/DMβCD inclusion complex would be useful for its application as healthcare products or herbal medicines.
Collapse
|
8
|
Formulation Development of Mirtazapine Liquisolid Compacts: Optimization Using Central Composite Design. Molecules 2022; 27:molecules27134005. [PMID: 35807252 PMCID: PMC9268088 DOI: 10.3390/molecules27134005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mirtazapine is a tetracyclic anti-depressant with poor water solubility. The aim of this study was to improve the dissolution rate of mirtazapine by delivering the drug as a liquisolid compact. Central composite design (CCD) was employed for the preparation of mirtazapine liquisolid compacts. In this, the impacts of two independent factors, i.e., excipient ratio (carrier:coating) and different drug concentration on the response of liquisolid system were optimized. Liquisolid compacts were prepared using propylene glycol as a solvent, microcrystalline cellulose as a carrier, and silicon dioxide (Aerosil) as the coating material. The crystallinity of the formulated drug and the interactions between the excipients were examined using X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR), respectively. The dissolution study for the liquisolid compact was carried out as per FDA guidelines. The results showed loss of crystallinity of the mirtazapine in the formulation and was completely solubilized in non-volatile solvent and equally dispersed throughout the powder system. Moreover, drug dissolution was found to be higher in liquisolid compacts than the direct compressed conventional tablets (of mirtazapine). The liquisolid technique appears to be a promising approach for improving the dissolution of poorly soluble drugs like mirtazapine.
Collapse
|