1
|
Ma P, Shang S, Liu R, Dong Y, Wu J, Gu W, Yu M, Liu J, Li Y, Chen Y. Prediction of teicoplanin plasma concentration in critically ill patients: a combination of machine learning and population pharmacokinetics. J Antimicrob Chemother 2024; 79:2815-2827. [PMID: 39207798 DOI: 10.1093/jac/dkae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Teicoplanin has been widely used in patients with infections caused by Staphylococcus aureus, especially for critically ill patients. The pharmacokinetics (PK) of teicoplanin vary between individuals and within the same individual. We aim to establish a prediction model via a combination of machine learning and population PK (PPK) to support personalized medication decisions for critically ill patients. METHODS A retrospective study was performed incorporating 33 variables, including PPK parameters (clearance and volume of distribution). Multiple algorithms and Shapley additive explanations were employed for feature selection of variables to determine the strongest driving factors. RESULTS The performance of each algorithm with PPK parameters was superior to that without PPK parameters. The composition of support vector regression, categorical boosting and a backpropagation neural network (7:2:1) with the highest R2 (0.809) was determined as the final ensemble model. The model included 15 variables after feature selection, of which the predictive performance was superior to that of models considering all variables or using only PPK. The R2, mean absolute error, mean squared error, absolute accuracy (±5 mg/L) and relative accuracy (±30%) of external validation were 0.649, 3.913, 28.347, 76.12% and 76.12%, respectively. CONCLUSIONS Our study offers a non-invasive, fast and cost-effective prediction model of teicoplanin plasma concentration in critically ill patients. The model serves as a fundamental tool for clinicians to determine the effective plasma concentration range of teicoplanin and formulate individualized dosing regimens accordingly.
Collapse
Affiliation(s)
- Pan Ma
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Ruixiang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Yuzhu Dong
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jiangfan Wu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenrui Gu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Mengchen Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Jing Liu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Ying Li
- Medical Big Data and Artificial Intelligence Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Yongchuan Chen
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|
2
|
Yu Z, Liu J, Yu H, Zhou L, Zhu J, Liang G, Yang Y, Zheng Y, Han Y, Xu J, Han G, Yu L, Zhao Y. Population pharmacokinetics and individualized dosing of vancomycin for critically ill patients receiving continuous renal replacement therapy: the role of residual diuresis. Front Pharmacol 2023; 14:1298397. [PMID: 38223197 PMCID: PMC10785304 DOI: 10.3389/fphar.2023.1298397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
Background: Vancomycin dosing is difficult in critically ill patients receiving continuous renal replacement therapy (CRRT). Previous population pharmacokinetic (PopPK) models seldom consider the effect of residual diuresis, a significant factor of elimination, and thus have poor external utility. This study aimed to build a PopPK model of vancomycin that incorporates daily urine volume to better describe the elimination of vancomycin in these patients. Methods: We performed a multicenter retrospective study that included critically ill patients who received intermittent intravenous vancomycin and CRRT. The PopPK model was developed using the NONMEM program. Goodness-of-fit plots and bootstrap analysis were employed to evaluate the final model. Monte Carlo simulation was performed to explore the optimal dosage regimen with a target area under the curve of ≥400 mg/L h and 400-600 mg/L h. Results: Overall, 113 observations available from 71 patients were included in the PopPK model. The pharmacokinetics could be well illustrated by a one-compartment model with first-order elimination, with the 24-h urine volume as a significant covariate of clearance. The final typical clearance was 1.05 L/h, and the mean volume of distribution was 69.0 L. For patients with anuria or oliguria, a maintenance dosage regimen of 750 mg q12h is recommended. Conclusion: Vancomycin pharmacokinetics in critically ill patients receiving CRRT were well described by the developed PopPK model, which incorporates 24-h urine volume as a covariate. This study will help to better understand vancomycin elimination and benefit precision dosing in these patients.
Collapse
Affiliation(s)
- Zhenwei Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Jieqiong Liu
- The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Haitao Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhou
- Zhejiang Zhoushan Hospital, Zhoushan, China
| | - Jianping Zhu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Liang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zheng
- The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Yun Han
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Junjun Xu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Han
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Lingyan Yu
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Zhao
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Wang Y, Yao F, Chen S, Ouyang X, Lan J, Wu Z, Wang Y, Chen J, Wang X, Chen C. Optimal Teicoplanin Dosage Regimens in Critically Ill Patients: Population Pharmacokinetics and Dosing Simulations Based on Renal Function and Infection Type. Drug Des Devel Ther 2023; 17:2259-2271. [PMID: 37546521 PMCID: PMC10404122 DOI: 10.2147/dddt.s413662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose To develop a population pharmacokinetic model describing teicoplanin concentrations in patients hospitalized in intensive care unit (ICU) and to perform Monte Carlo simulations to provide detailed dosing regimens of teicoplanin. Methods This single-center, prospective, observational study was conducted on 151 patients in ICU with 347 plasma samples. The population pharmacokinetics model was established and various covariates were evaluated. The probability of target attainment (PTA) of various proposal dosing regimens was calculated by Monte Carlo simulations. Results The two-compartment model adequately described teicoplanin concentration-time data. The estimated glomerular filtration rate (eGFR) associated with systemic clearance (CL) was the only covariate included in the final model. The estimate of CL was 0.838 L/h, with the eGFR adjustment factor of 0.00823. The volume of the central compartment (Vc), inter-compartmental clearance (Q) and volumes of the peripheral compartments (Vp) were 14.4 L, 3.08 L/h and 51.6 L, respectively. The simulations revealed that the standard dosage regimen was only sufficient for the patients with severe renal dysfunction (eGFR ≤ 30 mL/min/1.73 m2) to attain target trough concentration (Cmin, PTA 52.8%). When eGFR > 30 mL/min/1.73 m2, increasing dose and the administration times of loading doses were the preferred options to achieve target Cmin based on the renal function and types of infection. Conclusion The most commonly used standard dosage regimen was insufficient for all ICU patients. Our study provided detailed dosing regimens of teicoplanin stratified by eGFR and types of infection for ICU patients.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People’s Republic of China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Fen Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Shenglong Chen
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Jinhua Lan
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, People’s Republic of China
| | - Zheng Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Yirong Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Jingchun Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Xipei Wang
- Research Center of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People’s Republic of China
| |
Collapse
|
4
|
Smeets TJL, de Geus HRH, Rietveld A, Rietdijk WJR, Koch BCP, Endeman H, Hunfeld NGM. Pursuing the Real Vancomycin Clearance during Continuous Renal Replacement Therapy in Intensive Care Unit Patients: Is There Adequate Target Attainment? Blood Purif 2023; 52:652-659. [PMID: 37311418 DOI: 10.1159/000530815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/24/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Vancomycin is used in intensive care unit (ICU) patients for the treatment of infections caused by gram-positive bacteria. The vancomycin pharmacokinetic/pharmacodynamic index is a ratio of the area under the concentration to the minimum inhibitory concentration ≥400-600 h*mg/L. This target can generally be achieved by a plasma concentration of 20-25 mg/L. Together with the pathophysiological alterations and pharmacokinetic variability associated with critical illness, the use of continuous renal replacement therapy (CRRT) may complicate the attainment of adequate vancomycin concentrations. The primary objective was the prevalence of attainment of vancomycin concentrations 20-25 mg/L after 24 h in adult ICU patients receiving CRRT. Secondary outcomes were to evaluate target attainment at days 2 and 3 and to calculate vancomycin clearance (CL) by CRRT and residual diuresis. METHODS We performed a prospective observational study in adult ICU patients on CRRT, which received at least 24 h continuous infusion of vancomycin. Between May 2020 and February 2021, daily vancomycin residual blood gas and dialysate samples were collected from 20 patients, every 6 h and if possible vancomycin urine samples. Vancomycin was analysed with an immunoassay method. The CL by CRRT was calculated by a different approach correcting for the downtime and providing insight into the degree of filter patency. RESULTS The proportion of patients with vancomycin concentrations <20 mg/L was 50% 24 h after starting vancomycin (n = 10). No differences were observed in patient characteristics. The target vancomycin concentration 20-25 mg/L was only achieved in 30% of the patients. On days 2 and 3, despite the use of TDM and albeit in lower percentages, sub- and supratherapeutic levels were still observed. Taking downtime and filter patency into account resulted in lower vancomycin CL. CONCLUSIONS 50% of the studied ICU patients on CRRT showed subtherapeutic vancomycin concentrations 24 h after starting therapy. The results reveal that optimization of vancomycin dosage during CRRT therapy is needed.
Collapse
Affiliation(s)
- Tim J L Smeets
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hilde R H de Geus
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anouk Rietveld
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nicole G M Hunfeld
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Intensive Care Adults, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Wang C, Chen J, Yang B, Li S, Zhang Y, Chen L, Wang T, Dong Y. Determination of vancomycin exposure target and individualized dosing recommendations for critically ill patients undergoing continuous renal replacement therapy. Pharmacotherapy 2023; 43:180-188. [PMID: 36714991 DOI: 10.1002/phar.2771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
STUDY OBJECTIVE Few studies have been conducted to quantify the exposure target of vancomycin in intensive care unit (ICU) patients undergoing continuous renal replacement therapy (CRRT) and provide optimized dosage regimens. We aimed to determine vancomycin exposure target and dosing recommendations using data from an open database in critically ill patients undergoing CRRT. DESIGN A retrospective observational cohort study. DATA SOURCE A large public database. PATIENTS The adult patients who received intravenous vancomycin and CRRT treatment in the database between 2017 and 2019 were reviewed to determine eligibility. A total of 180 patients with 1186 observations were included in the population pharmacokinetic (PPK) model development. The clinical efficacy of vancomycin was analyzed in 159 eligible patients. METHODS A PPK model was developed to estimate individual pharmacokinetic (PK) parameters. The area under the concentration-time curve (AUC) was estimated by a Bayesian approach based on individual vancomycin concentrations. Multivariate logistic regression analyses were performed to identify the factors of clinical outcomes. Threshold of vancomycin exposure in predicting efficacy was identified via receiver operating characteristic (ROC) curve. Dosing recommendations were designed using Monte Carlo Simulations (MCS) based on the optimized exposure target. MEASUREMENTS AND MAIN RESULTS On covariate analysis, CRRT intensity significantly affected vancomycin PK. The AUC above 427 mg*h/L was the only significant predictor of clinical efficacy (adjusted odds ratio (aOR): 1.008, 95% confidence interval (CI): 1.004-1.011, p = 0.000). MCS indicated that vancomycin dosage regimens of 5 mg/kg q12h or 7.5 mg/kg q12h were recommended for patients with CRRT intensities of 20-25 mL/kg/h or 25.1-45 mL/kg/h, respectively. CONCLUSIONS An AUC threshold of 427 mg*h/L (assuming the minimal inhibitory concentration (MIC) = 1 mg/L) was a recommended efficacy exposure target of vancomycin for critically ill patients undergoing CRRT. Vancomycin 5-7.5 mg/kg q12h is recommended as the initial dosage regimens for ICU patients undergoing CRRT.
Collapse
Affiliation(s)
- Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiran Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Department of Hemodialysis, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Liu Y, Jiang L, Lou R, Wang M, Si Q. Vancomycin therapeutic drug monitoring in patients on continuous renal replacement therapy: a retrospective study. J Int Med Res 2022; 50:3000605221126871. [PMID: 36177821 PMCID: PMC9528032 DOI: 10.1177/03000605221126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives This study aimed to investigate vancomycin therapeutic drug monitoring (TDM) in patients on continuous renal replacement therapy (CRRT) and explore the risk factors for exceeding the target concentration. Methods This retrospective study enrolled patients aged ≥18 years who were admitted to the intensive care unit and treated with ≥3 intravenous vancomycin doses during CRRT, and who underwent vancomycin TDM. Demographic and other information were collected. Multivariate logistic regression was used assess the risk factors for exceeding the target concentration. Results Sixty-nine patients were included, and 40.6% patients underwent TDM. Additionally, 14.5% of patients reached the optimal concentration, and 87.5% of patients who exceeded the target received a daily dose adjustment. The cumulative dose of vancomycin and serum albumin were risk factors for exceeding the target concentration in patients on CRRT. Conclusions Patients on CRRT did not meet the optimal vancomycin management; <50% of the patients routinely received vancomycin TDM, and <15% achieved the optimal concentration. Fewer patients in the subtherapeutic group received a daily dose adjustment than those who exceeded the target concentration. Cumulative vancomycin and serum albumin doses before TDM were the risk factors for exceeding the target concentration in CRRT patients.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing 10053, China
| | - Li Jiang
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing 10053, China
| | - Ran Lou
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing 10053, China
| | - Meiping Wang
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing 10053, China
| | - Quan Si
- Department of Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing 10053, China
| |
Collapse
|