1
|
Tzeng WS, Teng WL, Huang PH, Yen FL, Shiue YL. Anti-cancer activity and cellular uptake of 7,3',4'- and 7,8,4'-trihydroxyisoflavone in HepG2 cells under hypoxic conditions. J Enzyme Inhib Med Chem 2024; 39:2288806. [PMID: 38153119 PMCID: PMC10763887 DOI: 10.1080/14756366.2023.2288806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Transarterial chemoembolisation (TACE) is used for unresectable hepatocellular carcinoma (HCC) treatment, but TACE-induced hypoxia leads to poor prognosis. The anti-cancer effects of soybean isoflavones daidzein derivatives 7,3',4'-trihydroxyisoflavone (734THIF) and 7,8,4'-trihydroxyisoflavone (784THIF) were evaluated under hypoxic microenvironments. Molecular docking of these isomers with cyclooxygenase-2 (COX-2) and vascular endothelial growth factor receptor 2 (VEGFR2) was assessed. About 40 μM of 734THIF and 784THIF have the best effect on inhibiting the proliferation of HepG2 cells under hypoxic conditions. At a concentration of 40 μM, 784THIF significantly inhibits COX-2 expression in pre-hypoxia conditions compared to 734THIF, with an inhibition rate of 67.73%. Additionally, 40 μM 784THIF downregulates the expression of hypoxic, inflammatory, and metastatic-related proteins, regulates oxidative stress, and inhibits the expression of anti-apoptotic proteins. The uptake by HepG2 confirmed higher 784THIF level and slower degradation characteristics under post- or pre-hypoxic conditions. In conclusion, our results showed that 784THIF had better anti-cancer effects and cellular uptake than 734THIF.
Collapse
Affiliation(s)
- Wen-Sheng Tzeng
- Department of Radiology, Pingtung Christian Hospital, Pingtung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Lin Teng
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pao-Hsien Huang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Lin Yen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Samanta P, Ghosh R, Pakhira S, Mondal M, Biswas S, Sarkar R, Bhowmik A, Saha P, Hajra S. Ribosome biogenesis and ribosomal proteins in cancer stem cells: a new therapeutic prospect. Mol Biol Rep 2024; 51:1016. [PMID: 39325314 DOI: 10.1007/s11033-024-09963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Ribosome has been considered as the fundamental macromolecular machine involved in protein synthesis in both prokaryotic and eukaryotic cells. This protein synthesis machinery consists of several rRNAs and numerous proteins. All of these factors are synthesized, translocated and assembled in a tightly regulated process known as ribosome biogenesis. Any impairment in this process causes development of several diseases like cancer. According to growing evidences, cancer cells display alteration of several ribosomal proteins. Besides, most of them are considered as key molecules involved in ribosome biogenesis, suggesting a correlation between those proteins and formation of ribosomes. Albeit, defective ribosome biogenesis in several cancers has gained prime importance, regulation of this process in cancer stem cells (CSCs) are still unrecognized. In this article, we aim to summarize the alteration of ribosome biogenesis and ribosomal proteins in CSCs. Moreover, we want to highlight the relation of ribosome biogenesis with hypoxia and drug resistance in CSCs based on the existing evidences. Lastly, this review wants to pay attention about the promising anti-cancer drugs which have potential to inhibit ribosome biogenesis in cancer cells as well as CSCs.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
3
|
Bhuniya S, Vrettos EI. Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives. Pharmaceutics 2024; 16:557. [PMID: 38675218 PMCID: PMC11054426 DOI: 10.3390/pharmaceutics16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the toxic warhead and thus, eliminate malignant tumor cells. However, their applicability can be further elevated by installing fluorescent modalities to yield hypoxia-activated theragnostic prodrugs (HATPs), which can be utilized for the simultaneous visualization and treatment of hypoxic tumor cells. The scope of this review is to summarize noteworthy advances in recent HATPs, highlight the challenges and opportunities for their further development, and discuss their potency to serve as personalized medicines in the future.
Collapse
Affiliation(s)
- Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India;
| | - Eirinaios I. Vrettos
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Ho YJ, Cheng HL, Liao LD, Lin YC, Tsai HC, Yeh CK. Oxygen-loaded microbubble-mediated sonoperfusion and oxygenation for neuroprotection after ischemic stroke reperfusion. Biomater Res 2023; 27:65. [PMID: 37415210 DOI: 10.1186/s40824-023-00400-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/21/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Ischemic stroke-reperfusion (S/R) injury is a crucial issue in the protection of brain function after thrombolysis. The vasodilation induced by ultrasound (US)-stimulated microbubble cavitation has been applied to reduce S/R injury through sonoperfusion. The present study uses oxygen-loaded microbubbles (OMBs) with US stimulation to provide sonoperfusion and local oxygen therapy for the reduction of brain infarct size and neuroprotection after S/R. METHODS The murine S/R model was established by photodynamic thrombosis and thrombolysis at the remote branch of the anterior cerebral artery. In vivo blood flow, partial oxygen pressure (pO2), and brain infarct staining were examined to analyze the validity of the animal model and OMB treatment results. The animal behaviors and measurement of the brain infarct area were used to evaluate long-term recovery of brain function. RESULTS The percentage of blood flow was 45 ± 3%, 70 ± 3%, and 86 ± 2% after 60 min stroke, 20 min reperfusion, and 10 min OMB treatment, respectively, demonstrating sonoperfusion, and the corresponding pO2 level was 60 ± 1%, 76 ± 2%, and 79 ± 4%, showing reoxygenation. After 14 days of treatment, a 87 ± 3% reduction in brain infarction and recovery of limb coordination were observed in S/R mice. The expression of NF-κB, HIF-1α, IL-1β, and MMP-9 was inhibited and that of eNOS, BDNF, Bcl2, and IL-10 was enhanced, indicating activation of anti-inflammatory and anti-apoptosis responses and neuroprotection. Our study demonstrated that OMB treatment combines the beneficial effects of sonoperfusion and local oxygen therapy to reduce brain infarction and activate neuroprotection to prevent S/R injury.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiang-Lung Cheng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, No.5Fuxing St.Guishan Dist., Taoyuan City, 333, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| |
Collapse
|
5
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|