1
|
Jing S, Chen H, Liu E, Zhang M, Zeng F, Shen H, Fang Y, Muhitdinov B, Huang Y. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease. Carbohydr Polym 2023; 316:121025. [PMID: 37321723 DOI: 10.1016/j.carbpol.2023.121025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, life quality-reducing disease with no cures available yet. To develop an effective medication suitable for long-term use is an urgent but unmet need. Quercetin (QT) is a natural dietary flavonoid with good safety and multifaceted pharmacological activities against inflammation. However, orally administrated quercetin yields unproductive outcomes for IBD treatment because of its poor solubility and extensive metabolism in the gastrointestinal tract. In this work, a colon-targeted QT delivery system (termed COS-CaP-QT) was developed, of which the pectin (PEC)/Ca2+ microspheres were prepared and then crosslinked by oligochitosan (COS). The drug release profile of COS-CaP-QT was pH-dependent and colon microenvironment-responsive, and COS-CaP-QT showed preferential distribution in the colon. The mechanism study showed that QT triggered the Notch pathway to regulate the proliferation of T helper 2 (Th2) cells and group 3 innate lymphoid cells (ILC3s) and the inflammatory microenvironment was remodeled. The in vivo therapeutic results revealed that COS-CaP-QT could relieve the colitis symptoms and maintain the colon length and intestinal barrier integrity.
Collapse
Affiliation(s)
- Shisuo Jing
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Huayuan Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Feng Zeng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Huan Shen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Bahtiyor Muhitdinov
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China; Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Yongzhuo Huang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.
| |
Collapse
|
2
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
3
|
Maslova AY, Mishvelov AE, Nasrulaeva KN, Yasaeva JK, Tsgoev AS, Medova MM. Overview of the Pharmacological Use of Pectins and Pectin-Containing Substances: Recent Achievements and Prospects. PHARMACOPHORE 2023. [DOI: 10.51847/j34k56lsvr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
5
|
Li J, Ma L, Wang C, Jiang P, Cui P, Wang J. Rationally Designed Oral DOX Gels for Colon-Specific Administration. Gels 2022; 8:gels8120759. [PMID: 36547283 PMCID: PMC9777853 DOI: 10.3390/gels8120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of death from cancer in both men and women. Traditional CRC dosage forms deliver the drug to both desired and unwanted sites of drug action, resulting in a number of negative side effects. Chemotherapeutic and chemopreventive agents are being targeted and delivered directly to the colon and rectum using targeted oral drug delivery systems. The main challenge in successfully targeting drugs to the colon via the oral route is avoiding drug absorption/degradation in the stomach and small intestine before the dosage form reaches the colon. In this study, we employed biocompatible chalk to adsorb DOX, then mixed pectin and cross-linked with calcium ions to form PC-DOX gels. The presence of cross-linked pectin and chalk can provide dual protection for the drug, significantly reducing drug leakage in gastric acid. In vitro release results showed that the designed PC-DOX could achieve 68% colon delivery efficiency. In the simulated colon environment, the released semi-degradable chalk did not affect the uptake of doxorubicin by colon cancer cells. Finally, in vivo simulation experiments in mice showed that rationally designed PC-DOX could achieve the highest colonic delivery efficiency. Our strategy has great potential for application in the treatment of colon cancer.
Collapse
|