1
|
Castillejo A, Martínez G, Delgado-Pujol EJ, Villalobo E, Carrillo F, Casado-Jurado D, Pérez-Bernal JL, Begines B, Torres Y, Alcudia A. Enhanced porous titanium biofunctionalization based on novel silver nanoparticles and nanohydroxyapatite chitosan coatings. Int J Biol Macromol 2025; 299:139846. [PMID: 39826717 DOI: 10.1016/j.ijbiomac.2025.139846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Titanium is widely used for implants however it presents limitations such as infection risk, stress shielding phenomenon, and poor osseointegration. To address these issues, a novel approach was proposed that involves fabricating porous titanium substrates, to reduce implant stiffness, minimizing stress shielding and bone resorption, and applying polymeric coatings to improve bioactivity. Composite coating prepared from chitosan, silver nanoparticles, and nanohydroxyapatite was optimized to enhance antibacterial properties and promote osseointegration. Chitosan with 80.5 % of deacetylation degree was used to prepare composites with diverse compositions, including different methodologies of adding silver nanoparticles, with silver concentrations below toxic level. Antibacterial activity was tested with three different strains, including Gram+ and Gram- bacteria, demonstrating excellent inhibition after 21 days. In addition, the induction of hydroxyapatite formation was investigated. Finally, the optimal porous metallic substrate that exhibited a more suitable stiffness (29 GPa) (close to the cortical bone tissue they intend to replace) was chosen to be infiltrated with the selected composites. In summary, this synergistic approach based on the combination of porous titanium substrates with 60 vol% porosity and a 355-500 μm pore size distribution coated with 3%CS-nHA-AgNPs-TPP-AgNPsbath composite provided a potential solution to provide implants with improved biomechanical balance and biofunctionality.
Collapse
Affiliation(s)
- Ana Castillejo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| | - Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| | - Ernesto J Delgado-Pujol
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain; Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain.
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| | - Francisco Carrillo
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain.
| | - David Casado-Jurado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| | - Juan Luis Pérez-Bernal
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain.
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain.
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
2
|
Martínez G, Vázquez J, Begines B, Alcudia A. Emerging Strategies to Improve the Design and Manufacturing of Biocompatible Therapeutic Materials. Pharmaceutics 2023; 15:1938. [PMID: 37514123 PMCID: PMC10383592 DOI: 10.3390/pharmaceutics15071938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, the field of medicine is drastically advancing, mainly due to the progress in emerging areas such as nanomedicine, regenerative medicine, and personalized medicine. For example, the development of novel drug delivery systems in the form of nanoparticles is improving the liberation, absorption, distribution, metabolism, and excretion (LADME) properties of the derived formulations, with a consequent enhancement in the treatment efficacy, a reduction in the secondary effects, and an increase in compliance with the dosage guidelines. Additionally, the use of biocompatible scaffolds is translating into the possibility of regenerating biological tissues. Personalized medicine is also benefiting from the advantages offered by additive manufacturing. However, all these areas have in common the need to develop novel materials or composites that fulfill the requirements of each application. Therefore, the aim of this Special Issue was to identify novel materials/composites that have been developed with specific characteristics for the designed biomedical application.
Collapse
Affiliation(s)
- Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan Vázquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
4
|
Chen H, Zhang Y, Yu T, Song G, Xu T, Xin T, Lin Y, Han B. Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics 2022; 14:2250. [PMID: 36297683 PMCID: PMC9612159 DOI: 10.3390/pharmaceutics14102250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a dysbiotic biofilm-induced and host-mediated inflammatory disease of tooth supporting tissues that leads to progressive destruction of periodontal ligament and alveolar bone, thereby resulting in gingival recession, deep periodontal pockets, tooth mobility and exfoliation, and aesthetically and functionally compromised dentition. Due to the improved biopharmaceutical and pharmacokinetic properties and targeted and controlled drug release, nano-based drug delivery systems have emerged as a promising strategy for the treatment of periodontal defects, allowing for increased efficacy and safety in controlling local inflammation, establishing a regenerative microenvironment, and regaining bone and attachments. This review provides an overview of nano-based drug delivery systems and illustrates their practical applications, future prospects, and limitations in the field of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
5
|
Delivery and assessment of a CRISPR/nCas9-based genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by magnetite-based nanoparticles. Sci Rep 2022; 12:15045. [PMID: 36057729 PMCID: PMC9440901 DOI: 10.1038/s41598-022-19407-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 12/27/2022] Open
Abstract
Mucopolysaccharidosis IV A (MPS IVA) is a lysosomal disorder caused by mutations in the GALNS gene. Consequently, the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate accumulate in the lysosomal lumen. Although enzyme replacement therapy has shown essential advantages for the patients, several challenges remain to overcome, such as the limited impact on the bone lesion and recovery of oxidative profile. Recently, we validated a CRISPR/nCas9-based gene therapy with promising results in an in vitro MPS IVA model. In this study, we have expanded the use of this CRISPR/nCas9 system to several MPS IVA fibroblasts carrying different GALNS mutations. Considering the latent need to develop more safety vectors for gene therapy, we co-delivered the CRISPR/nCas9 system with a novel non-viral vector based on magnetoliposomes (MLPs). We found that the CRISPR/nCas9 treatment led to an increase in enzyme activity between 5 and 88% of wild-type levels, as well as a reduction in GAGs accumulation, lysosomal mass, and mitochondrial-dependent oxidative stress, in a mutation-dependent manner. Noteworthy, MLPs allowed to obtain similar results to those observed with the conventional transfection agent lipofectamine. Overall, these results confirmed the potential of CRISPR/nCas9 as a genome editing tool for treating MPS IVA. We also demonstrated the potential use of MLPs as a novel delivery system for CRISPR/nCas9-based therapies.
Collapse
|
6
|
Recent Progress on the Applications of Nanomaterials and Nano-Characterization Techniques in Endodontics: A Review. MATERIALS 2022; 15:ma15155109. [PMID: 35897542 PMCID: PMC9331596 DOI: 10.3390/ma15155109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
The impact of nano-based technologies in endodontics for the identification and treatment of various dental infections is showing fast progress. Studies show that nanoparticles could serve as useful agents with many beneficial results and continue to be promising in the field of endodontics. To ensure progress and improvements on novel nanomaterials in relation to their physicochemical and biological properties, nano-identification methods for the detection and evaluation of diseases need to be further highlighted. This study aims to review the current technological progress and recent research outcomes as well as possible prospective applications of nano-based technologies in endodontics. A comprehensive literature survey has been carried out on the utilizations of nanomaterials and nano-characterization techniques in endodontics. The current status and recent applications in endodontics are discussed with illustrative examples. The results have shown that the progress and improved accuracy of nano-identification techniques enabled a better characterization, evaluation and selection of appropriate treatment plans for endodontics-related diseases. The results have been inspiring for further clinical investigations. Nano-endodontics is still a developing field with a strong potential for revolutions of novel materials and techniques in the diagnosis and treatment of dental diseases. Further improvements in nanoparticles properties will pave the way for the development of many beneficial endodontic therapeutic agents. The future looks encouraging for sustainable products and testing methods for clinical endodontic applications.
Collapse
|