1
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Marin JJG, Macias RIR, Asensio M, Romero MR, Temprano AG, Pereira OR, Jimenez S, Mauriz JL, Di Giacomo S, Avila MA, Efferth T, Briz O. Strategies to enhance the response of liver cancer to pharmacological treatments. Am J Physiol Cell Physiol 2024; 327:C11-C33. [PMID: 38708523 DOI: 10.1152/ajpcell.00176.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Alvaro G Temprano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Olívia R Pereira
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Silvia Jimenez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Servicio de Farmacia Hospitalaria, Hospital de Salamanca, Salamanca, Spain
| | - Jose L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IdisNA), Pamplona, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Khatir ZZ, Di Sotto A, Percaccio E, Tuylu Kucukkilinc T, Ercan A, Chippindale AM, Valipour M, Irannejad H. 4-{3-[(Pyridin-4-ylmethyl)amino]-[1,2,4]triazolo[4,3-b][1,2,4]triazin-6-yl}phenol: An improved anticancer agent in hepatocellular carcinoma and a selective MDR1/MRP modulator. Arch Pharm (Weinheim) 2024; 357:e2300704. [PMID: 38442326 DOI: 10.1002/ardp.202300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Hepatocellular carcinoma is the most common type of primary liver cancer. However, multidrug resistance (MDR) is a major obstacle to the effective chemotherapy of cancer cells. This report documents the rational design, synthesis, and biological evaluation of a novel series of triazolotriazines substituted with CH2NH-linked pyridine for use as dual c-Met/MDR inhibitors. Compound 12g with IC50 of 3.06 μM on HepG2 cells showed more potency than crizotinib (IC50 = 5.15 μM) in the MTT assay. In addition, 12g inhibited c-Met kinase at a low micromolar level (IC50 = 0.052 μM). 12g significantly inhibited P-gp and MRP1/2 efflux pumps in both cancerous HepG2 and BxPC3 cells starting from the lower concentrations of 3 and 0.3 µM, respectively. 12g did not inhibit MDR1 and MRP1/2 in noncancerous H69 cholangiocytes up to the concentration of 30 and 60 µM, respectively. Current results highlighted that cancerous cells were more susceptible to the effect of 12g than normal cells, in which the inhibition occurred only at the highest concentrations, suggesting a further interest in 12g as a selective anticancer agent. Overall, 12g, as a dual c-Met and P-gp/MRP inhibitor, is a promising lead compound for developing a new generation of anticancer agents.
Collapse
Affiliation(s)
- Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Tuba Tuylu Kucukkilinc
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Ayse Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | | | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Fujiwara-Tani R, Sasaki T, Bhawal UK, Mori S, Ogata R, Sasaki R, Ikemoto A, Kishi S, Fujii K, Ohmori H, Sho M, Kuniyasu H. Nuclear MAST4 Suppresses FOXO3 through Interaction with AKT3 and Induces Chemoresistance in Pancreatic Ductal Carcinoma. Int J Mol Sci 2024; 25:4056. [PMID: 38612866 PMCID: PMC11012408 DOI: 10.3390/ijms25074056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with a 5-year survival rate of less than 10%. Furthermore, the acquisition of anticancer drug resistance makes PDAC treatment difficult. We established MIA-GEM cells, a PDAC cell line resistant to gemcitabine (GEM), a first-line anticancer drug, using the human PDAC cell line-MIA-PaCa-2. Microtubule-associated serine/threonine kinase-4 (MAST4) expression was increased in MIA-GEM cells compared with the parent cell line. Through inhibitor screening, dysregulated AKT signaling was identified in MIA-GEM cells with overexpression of AKT3. MAST4 knockdown effectively suppressed AKT3 overexpression, and both MAST4 and AKT3 translocation into the nucleus, phosphorylating forkhead box O3a (FOXO3) in MIA-GEM cells. Modulating FOXO3 target gene expression in these cells inhibited apoptosis while promoting stemness and proliferation. Notably, nuclear MAST4 demonstrated higher expression in GEM-resistant PDAC cases compared with that in the GEM-sensitive cases. Elevated MAST4 expression correlated with a poorer prognosis in PDAC. Consequently, nuclear MAST4 emerges as a potential marker for GEM resistance and poor prognosis, representing a novel therapeutic target for PDAC.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 22K11396 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22H04922 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan;
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara 634-8522, Nara, Japan;
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (T.S.); (S.M.); (R.O.); (A.I.); (S.K.); (K.F.); (H.O.)
| |
Collapse
|
5
|
Di Giacomo S, Di Sotto A, Percaccio E, Scuotto E, Battistelli C, Mazzanti G, Menniti-Ippolito F, Ippoliti I. Interaction of Garcinia cambogia (Gaertn.) Desr. and Drugs as a Possible Mechanism of Liver Injury: The Case of Montelukast. Antioxidants (Basel) 2023; 12:1771. [PMID: 37760074 PMCID: PMC10525400 DOI: 10.3390/antiox12091771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Overweight and obesity prevalence has increased worldwide. Apart from conventional approaches, people also resort to botanical supplements for reducing body weight, although several adverse events have been associated with these products. In this context, the present study aimed at evaluating the toxicity of Garcinia cambogia-based products and shedding light on the mechanisms involved. The suspected hepatotoxic reactions related to G. cambogia-containing products collected within the Italian Phytovigilance System (IPS) were examined. Then, an in vitro study was performed to evaluate the possible mechanisms responsible for the liver toxicity, focusing on the modulation of oxidative stress and Nrf2 expression. From March 2002 to March 2022, the IPS collected eight reports of hepatic adverse reactions related to G. cambogia, which exclusively involved women and were mostly severe. The causality assessment was probable in three cases, while it was possible in five. In the in vitro experiments, a low cytotoxicity of G. cambogia was observed. However, its combination with montelukast greatly reduced cell viability, increased the intracellular ROS levels, and affected the cytoplasmic Nrf2 expression, thus suggesting an impairment of the antioxidant and cytoprotective defenses. Overall, our results support the safety concerns about G. cambogia-containing supplements and shed light on the possible mechanisms underpinning its hepatotoxicity.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Erica Scuotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Francesca Menniti-Ippolito
- National Centre for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (F.M.-I.); (I.I.)
| | - Ilaria Ippoliti
- National Centre for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (F.M.-I.); (I.I.)
| |
Collapse
|
6
|
Xing P, Zhong Y, Cui X, Liu Z, Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol Res 2023; 191:106766. [PMID: 37061144 DOI: 10.1016/j.phrs.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Digestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xingda Wu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Li R, Qin J, Wang Z, Lv F, Guo J, Zhu H, Huang Y. Dioscin reduced chemoresistance for colon cancer and analysis of sensitizing targets. Biochem Biophys Res Commun 2023; 638:94-102. [PMID: 36442237 DOI: 10.1016/j.bbrc.2022.10.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Chemotherapy resistance is the primary cause of high mortality in patients with advanced colon cancer. The combination of small molecule compound dioscin (DIO) and traditional medicine may have a chemosensitizing effect. In this study, we reported that DIO, in combination with Oxaliplatin (L-OHP) and 5-fluorouracil (5-Fu), can effectively inhibit colon cancer cell proliferation, and co-treatment was positively related to the DIO concentration. HCT116 co-treatment with 6.4 μM L-OHP and 0.8 μM DIO significantly reduced colony formation and migration, increased apoptosis, and cell-cycle arrest in the G0/G1 and G2/M phase. DIO-assisted L-OHP significantly inhibited the xenograft model growth and exhibited low toxicity.The mRNA-sequencing combined with network pharmacological analysis suggested that the DIO sensitivity may be related to the active targets FAS, CDKN1A, ABCA1, and PPARA, which are primarily involved in regulating the cell cycle and apoptosis. Finally, our experiments suggest that DIO may enhance the L-OHP sensitivity by regulating the cell cycle through the Notch pathway.
Collapse
Affiliation(s)
- Ruixue Li
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jianyan Qin
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Ziyuan Wang
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Fenghong Lv
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jiasen Guo
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Hong Zhu
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Youguang Huang
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
8
|
Di Sotto A, Gullì M, Minacori M, Mancinelli R, Garzoli S, Percaccio E, Incocciati A, Romaniello D, Mazzanti G, Eufemi M, Di Giacomo S. β-Caryophyllene Counteracts Chemoresistance Induced by Cigarette Smoke in Triple-Negative Breast Cancer MDA-MB-468 Cells. Biomedicines 2022; 10:2257. [PMID: 36140359 PMCID: PMC9496176 DOI: 10.3390/biomedicines10092257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Exposure to cigarette smoke (CS) has been associated with an increased risk of fatal breast cancers and recurrence, along with chemoresistance and chemotherapy impairment. This strengthens the interest in chemopreventive agents to be exploited both in healthy and oncological subjects to prevent or repair CS damage. In the present study, we evaluated the chemopreventive properties of the natural sesquiterpene β-caryophyllene towards the damage induced by cigarette smoke condensate (CSC) in triple negative breast cancer MDA-MB-468 cells. Particularly, we assessed the ability of the sesquiterpene to interfere with the mechanisms exploited by CSC to promote cell survival and chemoresistance, including genomic instability, cell cycle progress, autophagy/apoptosis, cell migration and related pathways. β-Caryophyllene was found to be able to increase the CSC-induced death of MDA-MB-468 cells, likely triggering oxidative stress, cell cycle arrest and apoptosis; moreover, it hindered cell recovery, autophagy activation and cell migration; at last, a marked inhibition of the signal transducer and activator of transcription 3 (STAT3) activation was highlighted: this could represent a key mechanism of the chemoprevention by β-caryophyllene. Although further studies are required to confirm the in vivo efficacy of β-caryophyllene, the present results suggest a novel strategy to reduce the harmful effect of smoke in cancer patients and to improve the survival expectations in breast cancer women.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Minacori
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefania Garzoli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Romaniello
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Pinus mugo Essential Oil Impairs STAT3 Activation through Oxidative Stress and Induces Apoptosis in Prostate Cancer Cells. Molecules 2022; 27:molecules27154834. [PMID: 35956786 PMCID: PMC9369512 DOI: 10.3390/molecules27154834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy.
Collapse
|