1
|
Hu Y, Zhang H, Lu Y, Ao D, Liang Z, Zhao M, Yang S, Tang Q. Microencapsulation of total saponins from stem and leaf of Panax notoginseng by freeze and spray drying: Process optimization, physicochemical properties, structure, antioxidant activity, and stability. J Food Sci 2024. [PMID: 39327544 DOI: 10.1111/1750-3841.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Ginsenosides are the primary active substance in ginseng plants and have a variety of benefits. However, its light and heat stability are weak and easy to decompose. This study used gum arabic (GA) and maltodextrin (MD) as wall materials, and 1% Tween 80 was used as emulsifier. Response surface methodology was used to optimize the preparation process of total saponins in the stems-leaves of Panax notoginseng (SLPNs) (SSLP) microcapsules by spray drying and freeze drying techniques. Under optimal process conditions, the two microcapsules have better solubility and lower moisture content (MC). The color of spray-dried SSLP microcapsules was greener and bluer, and the color was brighter. In morphology, the spray-dried SSLP microcapsules were spherical with a slightly shrunk surface, whereas the freeze-dried ones were lamellar and porous. The two microcapsules have strong stability under different storage conditions and in vitro gastrointestinal digestion simulation. In addition, both microcapsules and free SSLP contained multiple ginsenosides. At the same time, both microcapsules had good free radical scavenging ability. These results indicate that the microencapsulation technology could improve the stability and bioavailability of SSLP, which is expected to provide a reference for the intensive processing of the SLPN. PRACTICAL APPLICATION: After microencapsulation, the stem and leaf extract of Panax notoginseng improved its stability and taste, which laid a foundation for making more nutritious and better tasting food of the stem and leaf of P. notoginseng.
Collapse
Affiliation(s)
- Yunfei Hu
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Hui Zhang
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Yan Lu
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Donghui Ao
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Zhengwei Liang
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Ming Zhao
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Shengchao Yang
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Qingyan Tang
- College of Food Science and Technology, National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
2
|
Hester S, B Ferenz K, Adick A, Kakalias C, Mulac D, Azhdari S, Langer K. Triglyceride-filled albumin-based nanocapsules: A promising new system to avoid discarding poorly water-soluble drug candidates. Int J Pharm 2023; 646:123454. [PMID: 37776966 DOI: 10.1016/j.ijpharm.2023.123454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Even though current drug discovery provides a variety of potential drug candidates, many of those substances are difficult to formulate due to their poor water-solubility. To overcome this obstacle a technological formulation is crucial. Albumin-based nanocarriers are a possible intravenous delivery system which is already approved and commercially available. However, no universal carrier for poorly water-soluble substances is found yet. In the present study, new preparation processes for nanocapsules consisting of a medium-chain triglyceride (MCT) core and a human serum albumin (HSA) shell were developed. The nanocarrier system exhibits desirable physicochemical properties with a hydrodynamic diameter of 150 nm and a polydispersity index of 0.1. Furthermore, the nanocapsules were stable towards the addition of electrolytes and also in basic to neutral pH range. The nanocapsules were storage stable for at least 7 months at 4 °C and could also be lyophilized to reach an even longer shelf life of at least 21 months. In addition, the nanocapsule system showed no cytotoxicity in cell culture. The developed system represents a suitable carrier for a variety of different poorly water-soluble drug substances (e.g., fenofibrate, naproxen, indomethacin) showing a high potential for a universal formulation platform for further lipophilic active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Sarah Hester
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany.
| | - Katja B Ferenz
- Institute of Physiology, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | - Annika Adick
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany.
| | - Christos Kakalias
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany.
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany.
| | - Suna Azhdari
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany.
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany.
| |
Collapse
|
3
|
Suwanklang P, Thilavech T, Limwikrant W, Kitphati W, Supharattanasitthi W, Lomarat P. Analysis of Lutein Content in Microencapsulated Marigold Flower Extract ( Tagetes erecta L.) Using UHPLC-Q-Orbitrap-HRMS and Its Cytotoxicity in ARPE-19 Cells. Molecules 2023; 28:6025. [PMID: 37630277 PMCID: PMC10460044 DOI: 10.3390/molecules28166025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Organic solvents are commonly used to extract lutein. However, they are toxic and are not environmental-friendly. There are only a few reports on the quantification of lutein. Therefore, this study aimed to determine a suitable extraction method by which to obtain lutein from marigold flower (Tagetes erecta L.), using coconut oil to evaluate the cytotoxicity of extract in ARPE-19 cells, to optimize the encapsulation process for the development of microencapsulated marigold flower extract, and to develop the method for analysis of lutein by using UHPLC-Q-Orbitrap-HRMS. Coconut oil was used for the extraction of marigold flowers with two different extraction methods: ultrasonication and microwave-assisted extraction. The UHPLC-Q-Orbitrap-HRMS condition for the analysis of lutein was successfully developed and validated. Marigold flower extract obtained using the microwave method had the highest lutein content of 27.22 ± 1.17 mg/g. A cytotoxicity study revealed that 16 µM of lutein from marigold extract was non-toxic to ARPE-19 cells. For the development of microencapsulated marigold extract, the ratio of oil to wall at 1:5 had the highest encapsulation efficiency and the highest lutein content. Extraction of lutein using coconut oil and the microwave method was the suitable method. The microencapsulated marigold extract can be applied for the development of functional ingredients.
Collapse
Affiliation(s)
- Pornson Suwanklang
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (P.S.); (T.T.)
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (P.S.); (T.T.)
| | - Waree Limwikrant
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (W.K.); (W.S.)
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Mahidol-Liverpool Joint Unit for Ageing Research, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wasu Supharattanasitthi
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (W.K.); (W.S.)
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Mahidol-Liverpool Joint Unit for Ageing Research, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pattamapan Lomarat
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (P.S.); (T.T.)
| |
Collapse
|