1
|
Resztak M, Zalewska P, Wachowiak J, Sobkowiak-Sobierajska A, Główka FK. Voriconazole therapeutic drug monitoring including analysis of CYP2C19 phenotype in immunocompromised pediatric patients with invasive fungal infections. Eur J Clin Pharmacol 2024; 80:1829-1840. [PMID: 39240338 PMCID: PMC11458732 DOI: 10.1007/s00228-024-03752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) of voriconazole (VCZ) should be mandatory for all pediatric patients with invasive fungal infections (IFIs). The narrow therapeutic index, inter-individual variability in VCZ pharmacokinetics, and genetic polymorphisms cause achieving therapeutic concentration during therapy to be challenging in this population. METHODS The study included 44 children suffering from IFIs treated with VCZ. Trough concentrations (Ctrough) of VCZ ware determined by the HPLC-FLD method. Identification of the CYP2C19*2 and CYP2C19*17 genetic polymorphisms was performed by PCR-RFLP. The correlation between polymorphisms and VCZ Ctrough was analyzed. Moreover, the effect of factors such as dose, age, sex, route of administration, and drug interactions was investigated. RESULTS VCZ was administered orally and intravenously at a median maintenance dosage of 14.7 mg/kg/day for a median of 10 days. The VCZ Ctrough was highly variable and ranged from 0.1 to 6.8 mg/L. Only 45% of children reached the therapeutic range. There was no significant association between Ctrough and dosage, age, sex, route of administration, and concomitant medications. The frequencies of variant phenotype normal (NM), intermediate (IM), rapid (RM) and ultrarapid metabolizers (UM) were 41%, 18%, 28%, and 13%, respectively. Ctrough of VCZ were significantly higher in NM and IM groups compared with RM, and UM groups. CONCLUSION The Ctrough of VCZ is characterized by inter-individual variability and a low rate of patients reaching the therapeutic range. The significant association exists in children between VCZ Ctrough and CYPC19 phenotype. The combination of repeated TDM and genotyping is necessary to ensure effective treatment.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland.
| | - Paulina Zalewska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Franciszek K Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Hon KLE, Chan VPY, Leung AKC, Leung KKY, Hui WF. Invasive fungal infections in critically ill children: epidemiology, risk factors and antifungal drugs. Drugs Context 2024; 13:2023-9-2. [PMID: 38915918 PMCID: PMC11195526 DOI: 10.7573/dic.2023-9-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/20/2024] [Indexed: 06/26/2024] Open
Abstract
Background Invasive fungal infections (IFIs) are important infectious complications amongst critically ill children. The most common fungal infections are due to Candida species. Aspergillus, Zygomycetes and Fusarium are also emerging because of the empirical use of antifungal drugs. This updated review discusses the epidemiology of IFIs as well as antifungal drugs, dosing and potential adverse effects in critically ill children. Methods A PubMed search was conducted with Clinical Queries using the key terms "antifungal", "children", "critical care" AND "paediatric intensive care unit" OR "PICU". The search strategy included clinical trials, randomized controlled trials, meta-analyses, observational studies and reviews and was limited to the English literature in paediatrics. Results Candida and Aspergillus spp. are the most prevalent fungi in paediatric IFIs, causing invasive candidiasis infections (ICIs) and invasive aspergillosis infections (IAIs), respectively. These IFIs are associated with high morbidity, mortality and healthcare costs. Candida albicans is the principal Candida spp. associated with paediatric ICIs. The risks and epidemiology for IFIs vary if considering previously healthy children treated in the paediatric intensive care unit or children with leukaemia, malignancy or a severe haematological disease. The mortality rate for IAIs in children is 2.5-3.5-fold higher than for ICIs. Four major classes of antifungals for critically ill children are azoles, polyenes, antifungal antimetabolites and echinocandins. Conclusions Antifungal agents are highly efficacious. For successful treatment outcomes, it is crucial to determine the optimal dosage, monitor pharmacokinetics parameters and adverse effects, and individualized therapeutic monitoring. Despite potent antifungal medications, ICIs and IAIs continue to be serious infections with high mortality rates. Pre-emptive therapy has been used for IAIs. Most guidelines recommend voriconazole as initial therapy of invasive aspergillosis in most patients, with consideration of combination therapy with voriconazole plus an echinocandin in selected patients with severe disease. The challenge is to identify critically ill patients at high risks of ICIs for targeted prophylaxis. Intravenous/per os fluconazole is first-line pre-emptive treatment for Candida spp. whereas intravenous micafungin or intravenous liposomal amphotericin B is alternative pre-emptive treatment.This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kam Lun Ellis Hon
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
- Department of Paediatrics, CUHKMC, The Chinese University of
Hong Kong,
Hong Kong,
China
| | - Vivian PY Chan
- Department of Pharmacy,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Alexander KC Leung
- Department of Pediatrics, The University of Calgary, and The Alberta Children’s Hospital, Calgary, Alberta,
Canada
| | - Karen Ka Yan Leung
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Wun Fung Hui
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| |
Collapse
|
3
|
Hu L, Huang J, Li Y, He G. Clinical application of voriconazole in pediatric patients: a systematic review. Ital J Pediatr 2024; 50:113. [PMID: 38853280 PMCID: PMC11163776 DOI: 10.1186/s13052-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of this study was to review the literature on the clinical use of voriconazole (VRC) in pediatric patients. MEDLINE, Embase, PubMed, Web of Science, and Cochrane Library were searched from January 1, 2000, to August 15, 2023 for relevant clinical studies on VRC use in pediatric patients. Data were collected based on inclusion and exclusion criteria, and a systematic review was performed on recent research related to the use of VRC in pediatric patients. This systematic review included a total of 35 observational studies among which there were 16 studies investigating factors influencing VRC plasma trough concentrations (Ctrough) in pediatric patients, 14 studies exploring VRC maintenance doses required to achieve target range of Ctrough, and 11 studies focusing on population pharmacokinetic (PPK) research of VRC in pediatric patients. Our study found that the Ctrough of VRC were influenced by both genetic and non-genetic factors. The optimal dosing of VRC was correlated with age in pediatric patients, and younger children usually required higher VRC doses to achieve target Ctrough compared to older children. Establishing a PPK model for VRC can assist in achieving more precise individualized dosing in children.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| | - Juanjuan Huang
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yanfei Li
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Gefei He
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| |
Collapse
|
4
|
Zhao Y, Liu H, Xiao C, Hou J, Zhang B, Li J, Zhang M, Jiang Y, Sandaradura I, Ding X, Yan M. Enhancing voriconazole therapy in liver dysfunction: exploring administration schemes and predictive factors for trough concentration and efficacy. Front Pharmacol 2024; 14:1323755. [PMID: 38239188 PMCID: PMC10794455 DOI: 10.3389/fphar.2023.1323755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: The application of voriconazole in patients with liver dysfunction lacks pharmacokinetic data. In previous study, we proposed to develop voriconazole dosing regimens for these patients according to their total bilirubin, but the regimens are based on Monte Carlo simulation and has not been further verified in clinical practice. Besides, there are few reported factors that significantly affect the efficacy of voriconazole. Methods: We collected the information of patients with liver dysfunction hospitalized in our hospital from January 2018 to May 2022 retrospectively, including their baseline information and laboratory data. We mainly evaluated the efficacy of voriconazole and the target attainment of voriconazole trough concentration. Results: A total of 157 patients with liver dysfunction were included, from whom 145 initial and 139 final voriconazole trough concentrations were measured. 60.5% (95/157) of patients experienced the adjustment of dose or frequency. The initial voriconazole trough concentrations were significantly higher than the final (mean, 4.47 versus 3.90 μg/mL, p = 0.0297). Furthermore, daily dose, direct bilirubin, lymphocyte counts and percentage, platelet, blood urea nitrogen and creatinine seven covariates were identified as the factors significantly affect the voriconazole trough concentration. Binary logistic regression analysis revealed that the lymphocyte percentage significantly affected the efficacy of voriconazole (OR 1.138, 95% CI 1.016-1.273), which was further validated by the receiver operating characteristic curve. Conclusion: The significant variation in voriconazole trough concentrations observed in patients with liver dysfunction necessitates caution when prescribing this drug. Clinicians should consider the identified factors, particularly lymphocyte percentage, when dosing voriconazole in this population.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huaiyuan Liu
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenlin Xiao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jingjing Hou
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiakai Li
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Min Zhang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongfang Jiang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Indy Sandaradura
- School of Medicine, University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao Yan
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
5
|
Principi N, Petropulacos K, Esposito S. Impact of Pharmacogenomics in Clinical Practice. Pharmaceuticals (Basel) 2023; 16:1596. [PMID: 38004461 PMCID: PMC10675377 DOI: 10.3390/ph16111596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Polymorphisms of genes encoding drug metabolizing enzymes and transporters can significantly modify pharmacokinetics, and this can be associated with significant differences in drug efficacy, safety, and tolerability. Moreover, genetic variants of some components of the immune system can explain clinically relevant drug-related adverse events. However, the implementation of drug dose individualization based on pharmacogenomics remains scarce. In this narrative review, the impact of genetic variations on the disposition, safety, and tolerability of the most commonly prescribed drugs is reported. Moreover, reasons for poor implementation of pharmacogenomics in everyday clinical settings are discussed. The literature analysis showed that knowledge of how genetic variations can modify the effectiveness, safety, and tolerability of a drug can lead to the adjustment of usually recommended drug dosages, improve effectiveness, and reduce drug-related adverse events. Despite some efforts to introduce pharmacogenomics in clinical practice, presently very few centers routinely use genetic tests as a guide for drug prescription. The education of health care professionals seems critical to keep pace with the rapidly evolving field of pharmacogenomics. Moreover, multimodal algorithms that incorporate both clinical and genetic factors in drug prescribing could significantly help in this regard. Obviously, further studies which definitively establish which genetic variations play a role in conditioning drug effectiveness and safety are needed. Many problems must be solved, but the advantages for human health fully justify all the efforts.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
6
|
Patel JN, Robinson M, Morris SA, Jandrisevits E, Lopes KE, Hamilton A, Steuerwald N, Druhan LJ, Avalos B, Copelan E, Ghosh N, Grunwald MR. Pharmacogenetic and clinical predictors of voriconazole concentration in hematopoietic stem cell transplant recipients receiving CYP2C19-guided dosing. THE PHARMACOGENOMICS JOURNAL 2023; 23:201-209. [PMID: 37925536 DOI: 10.1038/s41397-023-00320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
CYP2C19-guided voriconazole dosing reduces pharmacokinetic variability, but many patients remain subtherapeutic. The aim of this study was to evaluate the effect of candidate genes and a novel CYP2C haplotype on voriconazole trough concentrations in patients receiving CYP2C19-guided dosing. This is a retrospective candidate gene study in allogeneic hematopoietic cell transplant (HCT) patients receiving CYP2C19-guided voriconazole dosing. Patients were genotyped for ABCB1, ABCG2, CYP2C9, CYP3A4, CYP3A5, and the CYP2C haplotype. Of 185 patients, 36% were subtherapeutic (of which 79% were normal or intermediate metabolizers). In all patients, CYP2C19 (p < 0.001), age (p = 0.018), and letermovir use (p = 0.001) were associated with voriconazole concentrations. In the subset receiving 200 mg daily (non-RM/UMs), CYP2C19 (p = 0.004) and ABCG2 (p = 0.015) were associated with voriconazole concentrations; CYP2C19 (p = 0.028) and letermovir use (p = 0.001) were associated with subtherapeutic status. CYP2C19 phenotype and letermovir use were significantly associated with subtherapeutic voriconazole concentrations and may be used to improve voriconazole precision dosing, while further research is needed to clarify the role of ABCG2 in voriconazole dosing.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA.
| | - Myra Robinson
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Sarah A Morris
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Elizabeth Jandrisevits
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Karine Eboli Lopes
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Lawrence J Druhan
- Hematology/Oncology Translational Research Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Belinda Avalos
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Edward Copelan
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Nilanjan Ghosh
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael R Grunwald
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
7
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
8
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|