1
|
Lauener F, Schläpfer M, Mueller TF, Von Moos S, Janker S, Doswald S, Stark WJ, Beck-Schimmer B. Functionalized magnetic nanoparticles remove donor-specific antibodies (DSA) from patient blood in a first ex vivo proof of principle study. Sci Rep 2024; 14:15818. [PMID: 38982209 PMCID: PMC11233667 DOI: 10.1038/s41598-024-66876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
The presence of donor-specific antibodies (DSA) such as antibodies directed against donor class I human leucocyte antigen (e.g., HLA-A) is a major barrier to kidney transplant success. As a proof of concept, functionalized magnetic nanoparticles have been designed to eliminate DSA from saline, blood and plasma of healthy donors and sensitized patients. Specific HLA-A1 protein was covalently bound to functionalized cobalt nanoparticles (fNP), human serum albumin (HSA) as control. fNP were added to anti-HLA class I-spiked saline, spiked volunteers' whole blood, and to whole blood and plasma of sensitized patients ex vivo. Anti-HLA-A1 antibody levels were determined with Luminex technology. Antibodies' median fluorescent intensity (MFI) was defined as the primary outcome. Furthermore, the impact of fNP treatment on blood coagulation and cellular uptake was determined. Treatment with fNP reduced MFI by 97 ± 2% and by 94 ± 4% (p < 0.001 and p = 0.001) in spiked saline and whole blood, respectively. In six known sensitized anti-HLA-A1 positive patients, a reduction of 65 ± 26% (p = 0.002) in plasma and 65 ± 33% (p = 0.012) in whole blood was achieved. No impact on coagulation was observed. A minimal number of nanoparticles was detected in peripheral mononuclear blood cells. The study demonstrates-in a first step-the feasibility of anti-HLA antibody removal using fNP. These pilot data might pave the way for a new personalized DSA removal technology in the future.
Collapse
Affiliation(s)
- Francis Lauener
- Institute of Anesthesiology, University Hospital Zurich (USZ), University of Zurich (UZH), 8001, Zurich, Switzerland
- Institute of Physiology, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Martin Schläpfer
- Institute of Anesthesiology, University Hospital Zurich (USZ), University of Zurich (UZH), 8001, Zurich, Switzerland
- Institute of Physiology, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Thomas F Mueller
- Department of Nephrology, University Hospital Zurich (USZ), University of Zurich (UZH), 8001, Zurich, Switzerland
| | - Seraina Von Moos
- Department of Nephrology, University Hospital Zurich (USZ), University of Zurich (UZH), 8001, Zurich, Switzerland
| | - Stefanie Janker
- Institute of Anesthesiology, University Hospital Zurich (USZ), University of Zurich (UZH), 8001, Zurich, Switzerland
| | - Simon Doswald
- Functional Materials Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, 8049, Zurich, Switzerland
| | - Wendelin J Stark
- Functional Materials Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, 8049, Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University Hospital Zurich (USZ), University of Zurich (UZH), 8001, Zurich, Switzerland.
- Institute of Physiology, University of Zurich (UZH), 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Pipatwatcharadate C, Iyer PR, Pissuwan D. Recent Update Roles of Magnetic Nanoparticles in Circulating Tumor Cell (CTC)/Non-CTC Separation. Pharmaceutics 2023; 15:2482. [PMID: 37896242 PMCID: PMC10610106 DOI: 10.3390/pharmaceutics15102482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Metastasis of cancer is a major cause of death worldwide. Circulating tumor cells (CTCs) are important in the metastatic process of cancer. CTCs are able to circulate in the bloodstream. Therefore, they can be used as biomarkers of metastasis. However, CTCs are rare when compared to a large number of blood cells in the blood. Many CTC detection methods have been developed to increase CTC detection efficiency. Magnetic nanoparticles (MNPs) have attracted immense attention owing to their potential medical applications. They are particularly appealing as a tool for cell separation. Because of their unique properties, MNPs are of considerable interest for the enrichment of CTCs through CTC or non-CTC separation. Herein, we review recent developments in the application of MNPs to separate CTCs or non-CTCs in samples containing CTCs. This review provides information on new approaches that can be used to detect CTCs in blood samples. The combination of MNPs with other particles for magnetic-based cell separation for CTC detection is discussed. Furthermore, different approaches for synthesizing MNPs are included in this review.
Collapse
Affiliation(s)
- Chawapon Pipatwatcharadate
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.P.); (P.R.I.)
| | - Poornima Ramesh Iyer
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.P.); (P.R.I.)
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Dakrong Pissuwan
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.P.); (P.R.I.)
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Medical Biotechnology (CEMB), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Malehmir S, Esmaili MA, Khaksary Mahabady M, Sobhani-Nasab A, Atapour A, Ganjali MR, Ghasemi A, Moradi Hasan-Abad A. A review: hemocompatibility of magnetic nanoparticles and their regenerative medicine, cancer therapy, drug delivery, and bioimaging applications. Front Chem 2023; 11:1249134. [PMID: 37711315 PMCID: PMC10499493 DOI: 10.3389/fchem.2023.1249134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Nanoparticles have demonstrated noteworthy advancements in the management of various complex medical conditions, particularly cancer. In any case, these particles still harbor the potential to improve medicate conveyance to challenging, hard-to-reach loci. The interactions that occur between nanoparticles and red blood cells during their journey throughout the human body, despite exposure to blood, are still not fully understood. Assessment of the ability of nanoparticles to integrate with blood, characterized as nanoparticle compatibility, has been consistently overlooked and undervalued in its import. This review article investigates the effect of nanoparticles on red blood cells, while examining the compatibility of nanoparticles through the angle of hemolysis. This article discusses the main roles of erythrocytes and also provides an informed interpretation of several mechanisms involved in the interaction of nanoparticles and erythrocytes. Throughout the review, significant emphasis is attributed to the investigation of hemocompatibility studies concerning newly designed nanoparticles to promote their successful translation into clinical application. This review article examines the compatibility of magnetic nanoparticles in various fields, including regenerative medicine, cancer therapy, bioimaging, and drug delivery. Our results show that the chemical composition of the nanoparticle surface is a determining factor in hemocompatibility performance and interaction with blood cells. The surface properties of nanoparticles, namely surface charge, geometry, porosity, and surface functionalities of polymers or specific functional groups, represent key determinants of hemocompatibility.
Collapse
Affiliation(s)
- Shirin Malehmir
- Karaj Branch, Molecular Biology Research Center, Islamic Azad University, Tehran, Iran
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - M. Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Ghasemi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Janker S, Doswald S, Schimmer RR, Schanz U, Stark WJ, Schläpfer M, Beck-Schimmer B. Targeted Large-Volume Lymphocyte Removal Using Magnetic Nanoparticles in Blood Samples of Patients with Chronic Lymphocytic Leukemia: A Proof-of-Concept Study. Int J Mol Sci 2023; 24:ijms24087523. [PMID: 37108680 PMCID: PMC10139131 DOI: 10.3390/ijms24087523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In the past, our research group was able to successfully remove circulating tumor cells with magnetic nanoparticles. While these cancer cells are typically present in low numbers, we hypothesized that magnetic nanoparticles, besides catching single cells, are also capable of eliminating a large number of tumor cells from the blood ex vivo. This approach was tested in a small pilot study in blood samples of patients suffering from chronic lymphocytic leukemia (CLL), a mature B-cell neoplasm. Cluster of differentiation (CD) 52 is a ubiquitously expressed surface antigen on mature lymphocytes. Alemtuzumab (MabCampath®) is a humanized, IgG1κ, monoclonal antibody directed against CD52, which was formerly clinically approved for treating chronic lymphocytic leukemia (CLL) and therefore regarded as an ideal candidate for further tests to develop new treatment options. Alemtuzumab was bound onto carbon-coated cobalt nanoparticles. The particles were added to blood samples of CLL patients and finally removed, ideally with bound B lymphocytes, using a magnetic column. Flow cytometry quantified lymphocyte counts before, after the first, and after the second flow across the column. A mixed effects analysis was performed to evaluate removal efficiency. p < 0.05 was defined as significant. In the first patient cohort (n = 10), using a fixed nanoparticle concentration, CD19-positive B lymphocytes were reduced by 38% and by 53% after the first and the second purification steps (p = 0.002 and p = 0.005), respectively. In a second patient cohort (n = 11), the nanoparticle concentration was increased, and CD19-positive B lymphocytes were reduced by 44% (p < 0.001) with no further removal after the second purification step. In patients with a high lymphocyte count (>20 G/L), an improved efficiency of approximately 20% was observed using higher nanoparticle concentrations. A 40 to 50% reduction of B lymphocyte count using alemtuzumab-coupled carbon-coated cobalt nanoparticles is feasible, also in patients with a high lymphocyte count. A second purification step did not further increase removal. This proof-of-concept study demonstrates that such particles allow for the targeted extraction of larger amounts of cellular blood components and might offer new treatment options in the far future.
Collapse
Affiliation(s)
- Stefanie Janker
- Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Doswald
- Institute for Chemical and Bioengineering, ETH, 8093 Zurich, Switzerland
| | - Roman R Schimmer
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, ETH, 8093 Zurich, Switzerland
| | - Martin Schläpfer
- Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
Wang Q, Cheng Y, Wang W, Tang X, Yang Y. Polyetherimide- and folic acid-modified Fe 3 O 4 nanospheres for enhanced magnetic hyperthermia performance. J Biomed Mater Res B Appl Biomater 2023; 111:795-804. [PMID: 36382676 DOI: 10.1002/jbm.b.35190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Recent studies have highlighted the development prospects of magnetic hyperthermia in cancer therapy. A few studies on the application of Fe3 O4 nanospheres for the magnetic hyperthermia of gynecological malignancies have achieved certain efficacy, but there was no visible progress currently. In this work, Fe3 O4 nanospheres modified with polyetherimide (PEI) and folic acid (FA) were synthesized using a hydrothermal method for possible utility in biocompatible and active tumor-targeting magnetic induction hyperthermia. The PEI- and FA-coated Fe3 O4 nanospheres showed high crystallinity, well-dispersed spherical structures and ideal Ms value. As a result, the designed Fe3 O4 @ PEI@FA nanospheres achieved higher specific absorption rate (SAR) values at 360 kHz and 308 Oe, as well as excellent biocompatibility in Hela, SKOV3, HEC-1-A and NIH3T3 cells. These nanospheres can be used as an optimal heating agent for the magnetic hyperthermia treatment of gynecological cancers.
Collapse
Affiliation(s)
- Qinganzi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Yuemei Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Wenhua Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Xiaolin Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China.,The Third People's Hospital of Gansu Province, Lanzhou, China
| | - Yongxiu Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| |
Collapse
|