1
|
Salmanipour S, Sokhansanj A, Jafari N, Hamishehkar H, Saha SC. Engineering nanoliposomal tiotropium bromide embedded in a lactose-arginine carrier forming Trojan-particle dry powders for efficient pulmonary drug delivery: A combined approach of in vitro-3D printing and in silico-CFD modeling. Int J Pharm 2025; 671:125171. [PMID: 39798623 DOI: 10.1016/j.ijpharm.2025.125171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features. This formulation was examined through in vitro-3D-printing and in silico-CFD analysis. Nanoliposomes and powder were evaluated for physicochemical attributes, aerosolization, encapsulation-efficiency (EE%), and release. Both liposomes (90 nm) and powder particles (3 µm) were spherical. Liposomes had an EE% over 95 % and a zeta-potential of -28.3 mV. The optimal formulation was tested in vitro at 30, 60, and 90 L/min using a 3D-printed airway replica. CFD analysis evaluated particle deposition in steady and realistic inhalation with monodisperse and polydisperse particles. Based on realistic airway geometry, model utilized k-ω-SST turbulence model for the continuous phase and Lagrangian-DEM for the discrete phase, analyzed through ANSYS Fluent. The 20 %-arginine nanoliposomal-tiotropium formulation outperformed others due to arginine's dispersibility and therapeutic benefits, including nitric oxide conversion. The formulation competes with commercial dry powders due to its chemical, biochemical advantages, and Trojan-based physical traits, reducing exhalation risk. Simulation data aligned with experimental findings, showing that higher inhalation flows increase particle deposition in airways due to greater inertia and turbulence. At 60 L/min, the polydisperse model matched experimental data better than the monodisperse model. Alongside improving dry powder performance via a nanoliposomal formulation, this research highlights the development of a novel CFD method for their assessment.
Collapse
Affiliation(s)
- Salar Salmanipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Sokhansanj
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Nahideh Jafari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street Baku, AZ1096, Azerbaijan.
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia.
| |
Collapse
|
2
|
Singh S, Aparna, Sharma N, Gupta J, Kyada A, Nathiya D, Behl T, Gupta S, Anwer MK, Gulati M, Sachdeva M. Application of nano- and micro-particle-based approaches for selected bronchodilators in management of asthma. 3 Biotech 2024; 14:208. [PMID: 39184911 PMCID: PMC11343956 DOI: 10.1007/s13205-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a chronic inflammatory condition that affects the airways, posing a substantial health threat to a large number of people worldwide. Bronchodilators effectively alleviate symptoms of airway obstruction by inducing relaxation of the smooth muscles in the airways, thereby reducing breathlessness and enhancing overall quality of life. The drug targeting to lungs poses significant challenges; however, this issue can be resolved by employing nano- and micro-particles drug delivery systems. This review provides brief insights about underlying mechanisms of asthma, including the role of several inflammatory mediators that contribute to the development and progression of this disease. This article provides an overview of the physicochemical features, pharmacokinetics, and mechanism of action of particular groups of bronchodilators, including sympathomimetics, PDE-4 inhibitors (phosphodiesterase-4 inhibitors), methylxanthines, and anticholinergics. This study presents a detailed summary of the most recent developments in incorporation of bronchodilators in nano- and micro-particle-based delivery systems which include solid lipid nanoparticles, bilosomes, novasomes, liposomes, polymeric nano- and micro-particles. Specifically, it focuses on breakthroughs in the categories of sympathomimetics, methylxanthines, PDE-4 inhibitors, and anticholinergics. These medications have the ability to specifically target alveolar macrophages, leading to a higher concentration of pharmaceuticals in the lung tissues.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Aparna
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406 Uttar Pradesh India
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, 360003 Gujarat India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Rajasthan, Jaipur India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, India
| | - Sumeet Gupta
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 1444411 Punjab India
- Faculty of Health, ARCCIM, University of Technology Sydney, Ultimo, NSW 20227 Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
4
|
Kang JH, Yang MS, Kwon TK, Kim DW, Park CW. Inhaled deep eutectic solvent based-nanoemulsion of pirfenidone in idiopathic pulmonary fibrosis. J Control Release 2022; 352:570-585. [PMID: 36341935 DOI: 10.1016/j.jconrel.2022.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Pirfenidone (PRF), the first FDA-approved drug to treat idiopathic pulmonary fibrosis (IPF) and formulated as an oral dosage form, has many side effects. To enhance the therapeutic effect, we discovered a high-load nanoemulsion using a novel deep eutectic solvent (DES) and developed an inhalation drug with improved bioavailability. The DES of PRF and N-acetylcysteine were discovered, and their physicochemical properties were evaluated in this study. The mechanism of DES formation was confirmed by FT-IR and 1H NMR and suggested to involve hydrogen bonding. The DES nanoemulsion in which the nano-sized droplets were dispersed is optimized by mixing the DES and distilled water in a ratio. The in vivo pharmacokinetic study showed that the pulmonary route of administration is superior to that of the oral route, and the DES nanoemulsion is superior to that of the PRF solution in achieving better bioavailability and lung distribution. The therapeutic effect of PRF for IPF could be confirmed through in vivo pharmacodynamics studies, including lung function assessment, enzyme-linked immunosorbent assay, histology, and micro-computed tomography using the bleomycin-induced IPF rat model. In addition, the pulmonary route administration of PRF is advantageous in reducing the toxicity risk.
Collapse
Affiliation(s)
- Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Seok Yang
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Taek Kwan Kwon
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|