1
|
Tiwari G, Patil A, Sethi P, Agrawal A, Ansari VA, Posa MK, Aher VD. Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2068-2089. [PMID: 38888441 DOI: 10.1080/09205063.2024.2366619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, in vitro drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, U.P, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, II Block Rajajinagar, Bengaluru, Karnataka, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University affiliation, Gajraula, India
| | - Ankur Agrawal
- Department of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, M.P, India
| | - Vaseem A Ansari
- Department of Pharmacy, Faculty of Pharmacy, Integral University Lucknow, India
| | - Mahesh Kumar Posa
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Vaibhav Dagaji Aher
- Department of Pharmaceutical Medicine, Maharashtra University of Health Sciences, Nashik, Maharashtra, India
| |
Collapse
|
2
|
Reddy PL, Shanmugasundaram S. Optimizing Process Parameters for Controlled Drug Delivery: A Quality by Design (QbD) Approach in Naltrexone Microspheres. AAPS PharmSciTech 2024; 25:105. [PMID: 38724807 DOI: 10.1208/s12249-024-02830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 09/05/2024] Open
Abstract
The formulation of microspheres involves a complex manufacturing process with multiple steps. Identifying the appropriate process parameters to achieve the desired quality attributes poses a significant challenge. This study aims to optimize the critical process parameters (CPPs) involved in the preparation of naltrexone microspheres using a Quality by Design (QbD) methodology. Additionally, the research aims to assess the drug release profiles of these microspheres under both in vivo and in vitro conditions. Critical process parameters (CPPs) and critical quality attributes (CQAs) were identified, and a Box-Behnken design was utilized to delineate the design space, ensuring alignment with the desired Quality Target Product Profile (QTPP). The investigated CPPs comprised polymer concentration, aqueous phase ratio to organic phase ratio, and quench volume. The microspheres were fabricated using the oil-in-water emulsion solvent extraction technique. Analysis revealed that increased polymer concentration was correlated with decreased particle size, reduced quench volume resulted in decreased burst release, and a heightened aqueous phase ratio to organic phase ratio improved drug entrapment. Upon analyzing the results, an optimal formulation was determined. In conclusion, the study conducted in vivo drug release testing on both the commercially available innovator product and the optimized test product utilizing an animal model. The integration of in vitro dissolution data with in vivo assessments presents a holistic understanding of drug release dynamics. The QbD approach-based optimization of CPPs furnishes informed guidance for the development of generic pharmaceutical formulations.
Collapse
Affiliation(s)
- P Lakshmikanth Reddy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Sangeetha Shanmugasundaram
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
3
|
Wang L, Wang P, Liu Y, Mustafa Mahayyudin MA, Li R, Zhang W, Zhan Y, Li Z. The Effect of Different Factors on Poly(lactic-co-glycolic acid) Nanoparticle Properties and Drug Release Behaviors When Co-Loaded with Hydrophilic and Hydrophobic Drugs. Polymers (Basel) 2024; 16:865. [PMID: 38611123 PMCID: PMC11013797 DOI: 10.3390/polym16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are versatile drug nanocarriers with a wide spectrum of applications owing to their extensive advantages, including biodegradability, non-toxic side effects, and low immunogenicity. Among the numerous nanoparticle preparation methods available for PLGA NPs (the hydrophobic polymer), one of the most extensively utilized preparations is the sonicated-emulsified solvent evaporation method, owing to its simplicity, speed, convenience, and cost-effectiveness. Nevertheless, several factors can influence the outcomes, such as the types of concentration of the surfactants and organic solvents, as well as the volume of the aqueous phase. The objective of this article is to explore the influence of these factors on the properties of PLGA NPs and their drug release behavior following encapsulation. Herein, PLGA NPs were fabricated using bovine serum albumin (BSA) as a surfactant to investigate the impact of influencing factors, including different water-soluble organic solvents such as propylene carbonate (PC), ethyl acetate (PA), and dichloromethane (DCM). Notably, the size of PLGA NPs was smaller in the EA group compared to that in the DCM group. Moreover, PLGA NPs showed excellent stability, ascribed to the presence of the BSA surfactant. Furthermore, PLGA NPs were co-loaded with varying concentrations of hydrophilic drugs (doxorubicin hydrochloride) and hydrophobic drugs (celecoxib), and exhibited pH-sensitive drug release behavior in PBS with pH 7.4 and pH 5.5.
Collapse
Affiliation(s)
- Lianguo Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Muhammad Atae Mustafa Mahayyudin
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Rong Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Weilun Zhang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yilan Zhan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhihua Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.W.); (Y.L.); (M.A.M.M.); (R.L.); (W.Z.); (Y.Z.); (Z.L.)
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
4
|
Majeed S, Qaiser M, Shahwar D, Mahmood K, Ahmed N, Hanif M, Abbas G, Shoaib MH, Ameer N, Khalid M. Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats. RSC Adv 2023; 13:21521-21536. [PMID: 37469962 PMCID: PMC10352712 DOI: 10.1039/d3ra01581e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Carcinogenic colorectal hemorrhage can cause severe blood loss and longitudinal ulcer, which ultimately become fatal if left untreated. The present study was aimed to formulate targeted release gemcitabine (GC)-containing magnetic microspheres (MM) of halloysite nanotubes (MHMG), chitosan (MCMG), and their combination (MHCMG). The preparation of MM by magnetism was confirmed by vibrating sample magnetometry (VSM), the molecular arrangement of NH2, alumina, and silica groups was studied by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS), the hollow spherical nature of the proposed MM was observed by scanning electron microscopy (SEM), functional groups were characterized by Fourier transform infrared (FTIR) spectroscopy and thermochemical modification was studied by thermogravimetric analysis (TGA). In vitro thrombus formation showed a decreasing trend of hemostatic time for MMs in the order of MHMG3 < MCMG3 < MHCMG7, which was confirmed by whole blood clotting kinetics. Interestingly, rat tail amputation and liver laceration showed 3 folds increased clotting efficiency of optimized MHCMG7 compared to that of control. In vivo histopathological studies and cell viability assays confirmed the regeneration of epithelial cells. The negligible systemic toxicity of MHCMG7, more than 90% entrapment of GC and high % release in alkaline medium made the proposed MM an excellent candidate for the control of hemorrhage in colorectal cancer. Conclusively, the healing of muscularis and improved recovery of the colon from granulomas ultimately improved the therapeutic effects of GC-containing MMs. The combination of both HNT and CTS microspheres made them more targeted.
Collapse
Affiliation(s)
- Sajid Majeed
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan Pakistan
| | - Muhammad Qaiser
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
- Drug Testing Laboratory Punjab Multan Pakistan
| | - Dure Shahwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan Pakistan
| | - Nadeem Ahmed
- Center for Excellence in Molecular Biology, University of Punjab Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
| | - Ghulam Abbas
- Faculty of Pharmacy, GOVT College University Faisalabad Pakistan
| | | | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| |
Collapse
|
5
|
Xie C, Xiong Q, Wei Y, Li X, Hu J, He M, Wei S, Yu J, Cheng S, Ahmad M, Liu Y, Luo S, Zeng X, Yu J, Luo H. Fabrication of biodegradable hollow microsphere composites made of polybutylene adipate co-terephthalate/polyvinylpyrrolidone for drug delivery and sustained release. Mater Today Bio 2023; 20:100628. [PMID: 37122839 PMCID: PMC10130625 DOI: 10.1016/j.mtbio.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Sustained drug release has attracted increasing interest in targeted drug therapy. However, existing methods of drug therapy suffer drug action time, large fluctuations in the effective concentration of the drug, and the risk of side effects. Here, a biodegradable composite of polybutylene adipate co-terephthalate/polyvinylpyrrolidone (PBAT/PVP) consisting of electrospun hollow microspheres as sustained-released drug carriers is presented. The as-prepared PBAT/PVP composites show faster degradation rate and drug (Erlotinib) release than that of PBAT. Furthermore, PBAT/PVP composites loaded with Erlotinib provide sustained release effect, thus achieving a better efficacy than that after the direct injection of erlotinib due to the fact that the composites allow a high drug concentration in the tumor for a longer period. Hence, this work provides a potential effective solution for clinical drug therapy and tissue engineering using drug microspheres with a sustained release.
Collapse
Affiliation(s)
- Chuan Xie
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qinqin Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yuanzhi Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Li
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jiajun Hu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Min He
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yufei Liu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, 550014, China
- Corresponding author. Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Corresponding author.
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jie Yu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Corresponding author. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
6
|
Amerhaider Nuar NN, Md. Jamil SNA, Li F, Mat Azmi ID, Chiang PC, Choong TSY. Synthesis of Controlled-Release Calcium Peroxide Nanoparticles Coated with Dextran for Removal of Doxycycline from Aqueous System. Polymers (Basel) 2022; 14:3866. [PMID: 36146006 PMCID: PMC9501176 DOI: 10.3390/polym14183866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoscale calcium peroxide (nCP) has turned out to be one of the effective and environmentally friendly approaches for wastewater remediation purposes. The rapid hydrolysis of nCPs and burst oxygen release caused by the high surface-to-volume ratio of nCPs could surpass the appropriate demand for oxygenation and pollutant degradation in the aqueous system. Thus, coated oxidants (COs) have been prepared using polymeric materials to ensure long-term efficacy and slow-release capability. Therefore, the nCPs were first prepared using dextran as a stabilizer to prevent irreversible agglomeration by the chemical precipitation method and had an average mean size of 2.33 ± 0.81 nm. The synthesized nCPs were then coated with dextran to produce dextran-coated nCPs. Their characteristics and effectiveness in doxycycline (DOX) degradation were assessed. The characterization of nCPs and dextran-coated nCPs was performed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), Brunauer, Emmett and Teller analysis (BET), dynamic light scattering (DLS) and thermogravimetric analysis (TGA) techniques. This work suggests that dextran-coated nCPs are beneficial in wastewater treatment practice in terms of the long-term efficacy of DOX degradation potential.
Collapse
Affiliation(s)
| | - Siti Nurul Ain Md. Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Fan Li
- Center of Sustainable Research, Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Pen-Chi Chiang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City 10673, Taiwan
| | - Thomas Shean Yaw Choong
- Center of Sustainable Research, Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|