1
|
Rodrigues FDS, Jantsch J, de Farias Fraga G, Dias VS, Pereira Medeiros C, Wickert F, Schroder N, Giovernardi M, Guedes RP. Cannabidiol partially rescues behavioral, neuroinflammatory and endocannabinoid dysfunctions stemming from maternal obesity in the adult offspring. Neuropharmacology 2024; 262:110196. [PMID: 39447736 DOI: 10.1016/j.neuropharm.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Maternal obesity is known to increase the risk of psychiatric disorders, such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While preventive measures are well-documented, practical approaches for addressing the damages once they are already established are limited. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on neuroinflammation and peripheral metabolic disturbances during adolescence, however, it is known that both factors tend to vary throughout life. Therefore, here we investigated the potential of CBD to mitigate these alterations in the adult offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) for 3 weeks from the 70th day of life. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and endocannabinoid markers were evaluated in the hypothalamus, prefrontal cortex (PFC) and hippocampus, as well as the biochemical profile in the plasma. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, restoring exacerbated astrocytic and microglial markers in the hypothalamus, PFC and hippocampus of the offspring, as well as endocannabinoid levels in the PFC, with notable sex differences. Additionally, CBD attenuated plasma glucose and lipopolysaccharides (LPS) concentrations in females. These findings underscore the persistent influence of maternal obesity on the offspring's health, encompassing metabolic irregularities and behavioral impairments, as well as the role of the endocannabinoid system in mediating these outcomes across the lifespan.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Pereira Medeiros
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Wickert
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nadja Schroder
- Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
3
|
Thompson ES, Alcorn J, Neary JP. Cannabinoid Therapy in Athletics: A Review of Current Cannabis Research to Evaluate Potential Real-World Cannabinoid Applications in Sport. Sports Med 2024:10.1007/s40279-024-02094-1. [PMID: 39168949 DOI: 10.1007/s40279-024-02094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
The increasing legalization of Cannabis sativa plant products has sparked growing interest in their therapeutic applications. Prohibition laws established in 1937 hindered formal research on cannabis, a plant with cultural and medicinal roots dating back to 2700 BC in Chinese history. Despite regulatory hurdles, published research on cannabis has emerged; yet elite athletes remain an underrepresented population in these studies. Athletes, known for exploring diverse substances to optimize performance, are drawn to the potential benefits of cannabinoid therapy, with anecdotal reports suggesting positive effects on issues ranging from anxiety to brain injuries. This review aims to evaluate empirical published cannabis research with a specific focus on its potential applications in athletics. The changing legal landscape, especially the removal of cannabis from drug testing programs in leagues such as the National Basketball Association (NBA), and endorsements by Major League Baseball (MLB) for cannabinoid products and the National Football League (NFL) for cannabis research, reflects a shift in the acceptability of such substances in sports. However, stigma, confusion, and a lack of education persist, hindering a cohesive understanding among sports organizations, including business professionals, policymakers, coaches, and medical/training staff, in addition to athletes themselves. Adding to the confusion is the lack of consistency with cannabinoid regulations from sport to sport, within or out of competition, and with cannabis bioactive compounds. The need for this review is underscored by the evolving attitudes toward cannabinoids in professional sports and the potential therapeutic benefits or harms they may offer. By synthesizing current cannabis research, this review aims to provide a comprehensive understanding of the applications and implications of cannabinoid use in the realm of athletics.
Collapse
Affiliation(s)
| | - Jane Alcorn
- University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | |
Collapse
|
4
|
Raïch I, Lillo J, Rivas-Santisteban R, Rebassa JB, Capó T, Santandreu M, Cubeles-Juberias E, Reyes-Resina I, Navarro G. Potential of CBD Acting on Cannabinoid Receptors CB 1 and CB 2 in Ischemic Stroke. Int J Mol Sci 2024; 25:6708. [PMID: 38928415 PMCID: PMC11204117 DOI: 10.3390/ijms25126708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is one of the leading causes of death. It not only affects adult people but also many children. It is estimated that, every year, 15 million people suffer a stroke worldwide. Among them, 5 million people die, while 5 million people are left permanently disabled. In this sense, the research to find new treatments should be accompanied with new therapies to combat neuronal death and to avoid developing cognitive impairment and dementia. Phytocannabinoids are among the compounds that have been used by mankind for the longest period of history. Their beneficial effects such as pain regulation or neuroprotection are widely known and make them possible therapeutic agents with high potential. These compounds bind cannabinoid receptors CB1 and CB2. Unfortunately, the psychoactive side effect has displaced them in the vast majority of areas. Thus, progress in the research and development of new compounds that show efficiency as neuroprotectors without this psychoactive effect is essential. On the one hand, these compounds could selectively bind the CB2 receptor that does not show psychoactive effects and, in glia, has opened new avenues in this field of research, shedding new light on the use of cannabinoid receptors as therapeutic targets to combat neurodegenerative diseases such as Alzheimer's, Parkinson's disease, or stroke. On the other hand, a new possibility lies in the formation of heteromers containing cannabinoid receptors. Heteromers are new functional units that show new properties compared to the individual protomers. Thus, they represent a new possibility that may offer the beneficial effects of cannabinoids devoid of the unwanted psychoactive effect. Nowadays, the approval of a mixture of CBD (cannabidiol) and Δ9-THC (tetrahydrocannabinol) to treat the neuropathic pain and spasticity in multiple sclerosis or purified cannabidiol to combat pediatric epilepsy have opened new therapeutic possibilities in the field of cannabinoids and returned these compounds to the front line of research to treat pathologies as relevant as stroke.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Montserrat Santandreu
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Erik Cubeles-Juberias
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
5
|
Huerta de la Cruz S, Santiago-Castañeda C, Rodríguez-Palma EJ, Rocha L, Sancho M. Lateral fluid percussion injury: A rat model of experimental traumatic brain injury. Methods Cell Biol 2024; 185:197-224. [PMID: 38556449 DOI: 10.1016/bs.mcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Traumatic brain injury (TBI) represents one of the leading causes of disability and death worldwide. The annual economic impact of TBI-including direct and indirect costs-is high, particularly impacting low- and middle-income countries. Despite extensive research, a comprehensive understanding of the primary and secondary TBI pathophysiology, followed by the development of promising therapeutic approaches, remains limited. These fundamental caveats in knowledge have motivated the development of various experimental models to explore the molecular mechanisms underpinning the pathogenesis of TBI. In this context, the Lateral Fluid Percussion Injury (LFPI) model produces a brain injury that mimics most of the neurological and systemic aspects observed in human TBI. Moreover, its high reproducibility makes the LFPI model one of the most widely used rodent-based TBI models. In this chapter, we provide a detailed surgical protocol of the LFPI model used to induce TBI in adult Wistar rats. We further highlight the neuroscore test as a valuable tool for the evaluation of TBI-induced sensorimotor consequences and their severity in rats. Lastly, we briefly summarize the current knowledge on the pathological aspects and functional outcomes observed in the LFPI-induced TBI model in rodents.
Collapse
Affiliation(s)
- Saúl Huerta de la Cruz
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México.
| | | | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México
| | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Martínez-Aguirre C, Márquez LA, Santiago-Castañeda CL, Carmona-Cruz F, Nuñez-Lumbreras MDLA, Martínez-Rojas VA, Alonso-Vanegas M, Aguado-Carrillo G, Gómez-Víquez NL, Galván EJ, Cuéllar-Herrera M, Rocha L. Cannabidiol Modifies the Glutamate Over-Release in Brain Tissue of Patients and Rats with Epilepsy: A Pilot Study. Biomedicines 2023; 11:3237. [PMID: 38137458 PMCID: PMC10741033 DOI: 10.3390/biomedicines11123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Drug-resistant epilepsy (DRE) is associated with high extracellular levels of glutamate. Studies support the idea that cannabidiol (CBD) decreases glutamate over-release. This study focused on investigating whether CBD reduces the evoked glutamate release in cortical synaptic terminals obtained from patients with DRE as well as in a preclinical model of epilepsy. Synaptic terminals (synaptosomes) were obtained from the epileptic neocortex of patients with drug-resistant temporal lobe epilepsy (DR-TLE, n = 10) or drug-resistant extratemporal lobe epilepsy (DR-ETLE, n = 10) submitted to epilepsy surgery. Synaptosomes highly purified by Percoll-sucrose density gradient were characterized by confocal microscopy and Western blot. Synaptosomes were used to estimate the high KCl (33 mM)-evoked glutamate release in the presence of CBD at different concentrations. Our results revealed responsive tissue obtained from seven patients with DR-TLE and seven patients with DR-ETLE. Responsive tissue showed lower glutamate release (p < 0.05) when incubated with CBD at low concentrations (less than 100 µM) but not at higher concentrations. Tissue that was non-responsive to CBD (DR-TLE, n = 3 and DR-ELTE, n = 3) showed high glutamate release despite CBD exposure at different concentrations. Simultaneously, a block of the human epileptic neocortex was used to determine its viability through whole-cell and extracellular electrophysiological recordings. The electrophysiological evaluations supported that the responsive and non-responsive human epileptic neocortices used in the present study exhibited proper neuronal viability and stability to acquire electrophysiological responses. We also investigated whether the subchronic administration of CBD could reduce glutamate over-release in a preclinical model of temporal lobe epilepsy. Administration of CBD (200 mg/kg, p.o. every 24 h for 7 days) to rats with lithium-pilocarpine-evoked spontaneous recurrent seizures reduced glutamate over-release in the hippocampus. The present study revealed that acute exposure to low concentrations of CBD can reduce the glutamate over-release in synaptic terminals obtained from some patients with DRE. This effect is also evident when applied subchronically in rats with spontaneous recurrent seizures. An important finding was the identification of a group of patients that were non-responsive to CBD effects. Future studies are essential to identify biomarkers of responsiveness to CBD to control DRE.
Collapse
Affiliation(s)
- Christopher Martínez-Aguirre
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Luis Alfredo Márquez
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Cindy Lizbeth Santiago-Castañeda
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Francia Carmona-Cruz
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Maria de los Angeles Nuñez-Lumbreras
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Vladimir A. Martínez-Rojas
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
- Center for Research on Aging, Center for Research and Advanced Studies, Mexico City 14330, Mexico
| | - Mario Alonso-Vanegas
- International Center for Epilepsy Surgery, HMG-Coyoacán Hospital, Mexico City 04380, Mexico;
| | - Gustavo Aguado-Carrillo
- Clinic of Epilepsy, General Hospital of México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Norma L. Gómez-Víquez
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| | - Emilio J. Galván
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
- Center for Research on Aging, Center for Research and Advanced Studies, Mexico City 14330, Mexico
| | - Manola Cuéllar-Herrera
- Clinic of Epilepsy, General Hospital of México Dr. Eduardo Liceaga, Mexico City 06720, Mexico
| | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, Mexico City 14330, Mexico; (C.M.-A.); (L.A.M.); (C.L.S.-C.); (F.C.-C.); (M.d.l.A.N.-L.); (V.A.M.-R.); (N.L.G.-V.); (E.J.G.)
| |
Collapse
|
7
|
Yan G, Zhang X, Li H, Guo Y, Yong VW, Xue M. Anti-oxidant effects of cannabidiol relevant to intracerebral hemorrhage. Front Pharmacol 2023; 14:1247550. [PMID: 37841923 PMCID: PMC10568629 DOI: 10.3389/fphar.2023.1247550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with a high mortality rate. Oxidative stress cascades play an important role in brain injury after ICH. Cannabidiol, a major non-psychotropic phytocannabinoids, has drawn increasing interest in recent years as a potential therapeutic intervention for various neuropsychiatric disorders. Here we provide a comprehensive review of the potential therapeutic effects of cannabidiol in countering oxidative stress resulting from ICH. The review elaborates on the various sources of oxidative stress post-ICH, including mitochondrial dysfunction, excitotoxicity, iron toxicity, inflammation, and also highlights cannabidiol's ability to inhibit ROS/RNS generation from these sources. The article also delves into cannabidiol's role in promoting ROS/RNS scavenging through the Nrf2/ARE pathway, detailing both extranuclear and intranuclear regulatory mechanisms. Overall, the review underscores cannabidiol's promising antioxidant effects in the context of ICH and suggests its potential as a therapeutic option.
Collapse
Affiliation(s)
- Gaili Yan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Acosta CH, Clemons GA, Citadin CT, Carr WC, Udo MSB, Tesic V, Sanicola HW, Freelin AH, Toms JB, Jordan JD, Guthikonda B, Wu CYC, Lee RHC, Lin HW. A role for protein arginine methyltransferase 7 in repetitive and mild traumatic brain injury. Neurochem Int 2023; 166:105524. [PMID: 37030326 PMCID: PMC10988608 DOI: 10.1016/j.neuint.2023.105524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Mild traumatic brain injury affects the largest proportion of individuals in the United States and world-wide. Pre-clinical studies of repetitive and mild traumatic brain injury (rmTBI) have been limited in their ability to recapitulate human pathology (i.e. diffuse rotational injury). We used the closed-head impact model of engineered rotation acceleration (CHIMERA) to simulate rotational injury observed in patients and to study the pathological outcomes post-rmTBI using C57BL/6J mice. Enhanced cytokine production was observed in both the cortex and hippocampus to suggest neuroinflammation. Furthermore, microglia were assessed via enhanced iba1 protein levels and morphological changes using immunofluorescence. In addition, LC/MS analyses revealed excess glutamate production, as well as diffuse axonal injury via Bielschowsky's silver stain kit. Moreover, the heterogeneous nature of rmTBI has made it challenging to identify drug therapies that address rmTBI, therefore we sought to identify novel targets in the concurrent rmTBI pathology. The pathophysiological findings correlated with a time-dependent decrease in protein arginine methyltransferase 7 (PRMT7) protein expression and activity post-rmTBI along with dysregulation of PRMT upstream mediators s-adenosylmethionine and methionine adenosyltransferase 2 (MAT2) in vivo. In addition, inhibition of the upstream mediator MAT2A using the HT22 hippocampal neuronal cell line suggest a mechanistic role for PRMT7 via MAT2A in vitro. Collectively, we have identified PRMT7 as a novel target in rmTBI pathology in vivo and a mechanistic link between PRMT7 and upstream mediator MAT2A in vitro.
Collapse
Affiliation(s)
- Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William C Carr
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Henry W Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Anne H Freelin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jamie B Toms
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
9
|
Rodrigues FDS, Jantsch J, Fraga GDF, Dias VS, Eller S, De Oliveira TF, Giovenardi M, Guedes RP. Cannabidiol treatment improves metabolic profile and decreases hypothalamic inflammation caused by maternal obesity. Front Nutr 2023; 10:1150189. [PMID: 36969815 PMCID: PMC10033544 DOI: 10.3389/fnut.2023.1150189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionThe implications of maternal overnutrition on offspring metabolic and neuroimmune development are well-known. Increasing evidence now suggests that maternal obesity and poor dietary habits during pregnancy and lactation can increase the risk of central and peripheral metabolic dysregulation in the offspring, but the mechanisms are not sufficiently established. Furthermore, despite many studies addressing preventive measures targeted at the mother, very few propose practical approaches to treat the damages when they are already installed.MethodsHere we investigated the potential of cannabidiol (CBD) treatment to attenuate the effects of maternal obesity induced by a cafeteria diet on hypothalamic inflammation and the peripheral metabolic profile of the offspring in Wistar rats.ResultsWe have observed that maternal obesity induced a range of metabolic imbalances in the offspring in a sex-dependant manner, with higher deposition of visceral white adipose tissue, increased plasma fasting glucose and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum cholesterol and triglycerides only occurred in females, while the increase in plasma insulin and the homeostatic model assessment index (HOMA-IR) was only observed in male offspring. We also found an overexpression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6, and interleukin (IL) 1β in the hypothalamus, a trademark of neuroinflammation. Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in the offspring of obese mothers, indicating an adaptive mechanism to in utero neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to reduce white adipose tissue and revert insulin resistance in males, reduce plasma triglycerides in females, and attenuate plasma LPS levels and overexpression of TNFα and IL6 in the hypothalamus of both sexes.DiscussionTogether, these results indicate an intricate interplay between peripheral and central counterparts in both the pathogenicity of maternal obesity and the therapeutic effects of CBD. In this context, the impairment of internal hypothalamic circuitry caused by neuroinflammation runs in tandem with the disruptions of important metabolic processes, which can be attenuated by CBD treatment in both ends.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Franco De Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Renata Padilha Guedes,
| |
Collapse
|
10
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|