1
|
Rathore SS, Leno Jenita JJ, Dotherabandi M. A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-42. [PMID: 39429014 DOI: 10.1080/09205063.2024.2416293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, in vitro, and in vivo studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased in vitro cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect in vivo. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.
Collapse
Affiliation(s)
- Seema S Rathore
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - J Josephine Leno Jenita
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - Manjula Dotherabandi
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
2
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
3
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
4
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
5
|
Assiri AA, Glover K, Mishra D, Waite D, Vora LK, Thakur RRS. Block copolymer micelles as ocular drug delivery systems. Drug Discov Today 2024; 29:104098. [PMID: 38997002 DOI: 10.1016/j.drudis.2024.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.
Collapse
Affiliation(s)
- Ahmad A Assiri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK; Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - David Waite
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | | |
Collapse
|
6
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
7
|
de Barros DPC, Fonseca LP, Gonçalves LG, Serrano DS, Oliva A. Design and Biocompatibility of Biodegradable Poly(octamethylene suberate) Nanoparticles to Treat Skin Diseases. Pharmaceutics 2024; 16:753. [PMID: 38931876 PMCID: PMC11207594 DOI: 10.3390/pharmaceutics16060753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Biodegradable aliphatic polyester formulations as carriers for topical drug delivery show the potential to encapsulate structurally different therapeutic compounds. Poly(octamethylene suberate) (POS) nanoparticles (POS-NPs) were used as a matrix to encapsulate four therapeutic molecules used to treat skin disorders: caffeine (CF), quercetin (QR), hydrocortisone (HC), and adapalene (AD). Hydrophobicity and chemical structure of bioactive compounds (BCs) influenced the physicochemical stability of drug-loaded nanoparticles. The particle size of drug-loaded nanoparticles was between 254.9 nm for the CF-POS-NP and 1291.3 for QR-POS-NP. Particles had a negative charge from -27.6 mV (QR) to -49.2 mV (HC). Drug loading content for all BC-POS-NPs varies between 36.11 ± 1.48% (CF-POS-NP) and 66.66 ± 4.87% (AD-POS-NP), and their entrapment efficiency is relatively high (28.30 ± 1.81% and 99.95 ± 0.04%, respectively). Calorimetric analysis showed the appearance of polymorphism for AD- and HC-loaded systems and the drug's complete solubilisation into all nanoparticle formulations. FTIR and NMR spectra showed apparent drug incorporation into the polymer matrix of NPs. The encapsulation of BCs enhanced the antioxidative effect. The prepared POS nanoparticles' cytotoxicity was studied using two dermal cell lines, keratinocyte (HaCaT) cells and fibroblasts (HDFn). The nanoparticle cytotoxic effect was more substantial on HaCaT cell lines. A reconstructed human epidermis (RHE) was successfully used to investigate the penetration of polymeric NPs. Based on permeation and histology studies, HC-POS-NPs and CF-POS-NPs were shown not to be suitable for dermal applications with the explored drug concentrations. AD presents a high permeation rate and no toxic impact on RHE.
Collapse
Affiliation(s)
- Dragana P. C. de Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidad Nova de Lisboa, 2780-157 Oeiras, Portugal; (L.G.G.); (A.O.)
| | - Luís P. Fonseca
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidad de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidad Nova de Lisboa, 2780-157 Oeiras, Portugal; (L.G.G.); (A.O.)
| | - Diogo S. Serrano
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidad de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidad Nova de Lisboa, 2780-157 Oeiras, Portugal; (L.G.G.); (A.O.)
| |
Collapse
|
8
|
Zhao L, Wang WZ, Jiang TT, Sun TZ, Liu B, Zhu B. Drug delivery system based on metal-organic framework improved 5-Fluorouracil against spring viremia of carp virus. Antiviral Res 2024; 226:105881. [PMID: 38604448 DOI: 10.1016/j.antiviral.2024.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Spring viremia of carp virus (SVCV), as a high pathogenicity pathogen, has seriously restricts the healthy and sustainable development of cyprinid farming industry. In this study, we selected 5-Fluorouracil (5-Fu) as the drug model based on zeolitic imidazolate framework-8 (ZIF-8) to construct a drug delivery system (5-Fu@ZIF-8), and the anti-SVCV activity was detected in vitro and in vivo. The results showed 5-Fu@ZIF-8 was uniform cubic particle with truncated angle and smooth surface, and the particle size was 90 nm. The anti-SVCV activity in vitro results showed that the highest inhibition rate of 5-Fu was 77.93% at 40 mg/L and the inhibitory concentration at half-maximal activity (IC50) was 20.86 mg/L. For 5-Fu@ZIF-8, the highest inhibition rate was 91.36% at 16 mg/L, and the IC50 value was 5.85 mg/L. In addition, the cell viability was increased by 18.1% after 5-Fu treatment. Similarly, after 5-Fu@ZIF-8 treatment, the cell viability increased by 27.3%. Correspondingly, in vivo experimental results showed the viral loads reduced by 18.1% on the days 7 and the survival rate increased to 19.4% at 80 mg/L after 5-Fu treatment. For 5-Fu@ZIF-8, the viral loads reduced by 41.2% and the survival rate increased to 54.8%. Mechanistically, 5-Fu inhibits viral replication by regulating p53 expression and promoting early apoptosis in infected cells. All results indicated that 5-Fu@ZIF-8 improved the anti-SVCV activity; it may be a potential strategy to construct a drug-loaded system with ZIF-8 as a carrier for the prevention and treatment of aquatic diseases.
Collapse
Affiliation(s)
- Liang Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Wei-Ze Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Tian-Tian Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Tian-Zi Sun
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Zlotnikov ID, Ezhov AA, Dobryakova NV, Kudryashova EV. Disulfide Cross-Linked Polymeric Redox-Responsive Nanocarrier Based on Heparin, Chitosan and Lipoic Acid Improved Drug Accumulation, Increased Cytotoxicity and Selectivity to Leukemia Cells by Tumor Targeting via "Aikido" Principle. Gels 2024; 10:157. [PMID: 38534575 DOI: 10.3390/gels10030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
We have developed a micellar formulation of anticancer drugs based on chitosan and heparin grafted with lipoic and oleic acids that can release the cytotoxic cargo (doxorubicin) in response to external stimuli, such as increased glutathione concentration-a hallmark of cancer. Natural polysaccharides (heparin and chitosan) provide the pH sensitivity of the nanocarrier: the release of doxorubicin (Dox) is enhanced in a slightly acidic environment (tumor microenvironment). Fatty acid residues are necessary for the formation of nanoparticles (micelles) and solubilization of cytostatics in a hydrophobic core. Lipoic acid residues provide the formation of a labile S-S cross-linking between polymer chains (the first variant) or covalently attached doxorubicin molecules through glutathione-sensitive S-S bridges (the second variant)-both determine Redox sensitivity of the anticancer drugs carriers stable in blood circulation and disintegrate after intracellular uptake in the tumor cells. The release of doxorubicin from micelles occurs slowly (20%/6 h) in an environment with a pH of 7.4 and the absence of glutathione, while in a slightly acidic environment and in the presence of 10 mM glutathione, the rate increases up to 6 times, with an increase in the effective concentration up to 5 times after 7 h. The permeability of doxorubicin in micellar formulations (covalent S-S cross-linked and not) into Raji, K562, and A875 cancer cells was studied using FTIR, fluorescence spectroscopy and confocal laser scanning microscopy (CLSM). We have shown dramatically improved accumulation, decreased efflux, and increased cytotoxicity compared to doxorubicin control with three tumor cell lines: Raji, K562, and A875. At the same time, cytotoxicity and permeability for non-tumor cells (HEK293T) are significantly lower, increasing the selectivity index against tumor cells by several times.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Natalia V Dobryakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| |
Collapse
|
10
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
11
|
Pourjavadi A, Kashani FB, Doroudian M, Amin SS. Synthesis and characterization of stimuli responsive micelles from chitosan, starch, and alginate based on graft copolymers with polylactide-poly(methacrylic acid) and polylactide- poly[2(dimethyl amino)ethyl methacrylate] side chains. Int J Biol Macromol 2023; 253:127170. [PMID: 37783250 DOI: 10.1016/j.ijbiomac.2023.127170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The primary objective of this paper is to serve as a comprehensive study on the synthesis of stimulus-sensitive micelles based on polysaccharides. In pursuit of this goal, functionalization with polylactide (PLA) was used as the water-resistance part and poly[2(Dimethyl amino)ethyl methacrylate] (PDMAEMA) or poly(methacrylic acid) (PMA) were employed as the stimulus-sensitive part to create micelles with a simple structure. FTIR and 1HNMR measurements were utilized to characterize the functionalized polysaccharides. Fluorescence spectroscopy was used to determine the critical micelle concentration. The average micelles' diameter, as observed in SEM and TEM pictures, ranges from 50 to 200 nm. To gain a better understanding of the potential of theses micelles for delivering drugs in a stimulus-sensitive manner, drug release tests were conducted. The cytotoxicity of these nano-vehicles was examined using the MTT assay. Utilizing MCF7 cells stained with DAPI and Mito Tracker, cellular uptake studies were also investigated. The results indicate that the behavior of the micelles is nearly same even though they used polysaccharides with various charge densities or different stimulus sensitive polymers. This approach, therefore, demonstrates that a broad range of micelle production is possible by employing diverse polysaccharides functionalized with PLA and polymethacrylates.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran.
| | - Fatemeh Bolori Kashani
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Mohadeseh Doroudian
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| | - Shiva Sadat Amin
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran, Iran
| |
Collapse
|
12
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
13
|
Zlotnikov ID, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Triphenylphosphine Derivatives of Allylbenzenes Express Antitumor and Adjuvant Activity When Solubilized with Cyclodextrin-Based Formulations. Pharmaceuticals (Basel) 2023; 16:1651. [PMID: 38139778 PMCID: PMC10747112 DOI: 10.3390/ph16121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use of these substances has never been an option. Here, we show that this problem can be solved by using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in the range 1-10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane is more prone to depolarization compared to normal cells, which probably explains the observed selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15-20% of the cells died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic medications, where effectiveness and selectivity are achieved through decreased concentration of the primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
14
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
15
|
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A, Sadanandan P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology 2023; 21:414. [PMID: 37946240 PMCID: PMC10634178 DOI: 10.1186/s12951-023-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Alosh Greeny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Amritasree Nandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Ranjay Kumar Sah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | | | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| |
Collapse
|
16
|
Chaurasia M, Singh R, Sur S, Flora SJS. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 2023; 14:1184472. [PMID: 37576816 PMCID: PMC10416257 DOI: 10.3389/fphar.2023.1184472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed solid cancers globally. Extensive research has been going on for decades to meet the challenges of treating solid tumors with selective compounds. This article aims to summarize the therapeutic agents which are either being used or are currently under approval for use in the treatment or mitigation of breast cancer by the US FDA, to date. A structured search of bibliographic databases for previously published peer-reviewed research papers on registered molecules was explored and data was sorted in terms of various categories of drugs used in first line/adjuvant therapy for different stages of breast cancer. We included more than 300 peer-reviewed papers, including both research and reviews articles, in order to provide readers an useful comprehensive information. A list of 39 drugs are discussed along with their current status, dose protocols, mechanism of action, pharmacokinetics, possible side effects, and marketed formulations. Another interesting aspect of the article included focusing on novel formulations of these drugs which are currently in clinical trials or in the process of approval. This exhaustive review thus shall be a one-stop solution for researchers who are working in the areas of formulation development for these drugs.
Collapse
Affiliation(s)
| | | | | | - S. J. S. Flora
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Xiong M, Li Y, He H, Hao S, Fang P, Xu M, Chen Y, Chen Y, Yu S, Hu H. Cyclosporine A-loaded colon-targeted oral nanomicelles self-assembly by galactosylated carboxymethyl chitosan for efficient ulcerative colitis therapy. Eur J Pharm Biopharm 2023:S0939-6411(23)00163-7. [PMID: 37336365 DOI: 10.1016/j.ejpb.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
An oral galactosylated carboxymethyl chitosan polymeric nanomicelles (Gal-N-CMCS NPs) embedded in chitosan-alginate hydrogel (CA-Gel) was developed to load cyclosporine A (CyA) as therapeutic agents against ulcerative colitis (UC). Galactose modified CMCS with macrophage targeting characteristic and CyA via a simple ultrasonication method to form Gal-N-CMCS/CyA NPs, and mixed CA-Gel to acquire the final formulation (Gal-N-CMCS/CyA Gel). The generated Gal-N-CMCS/CyA NPs displayed a desirable particle size (206.8 nm), negative surface charge (-19.5 mV), and high encapsulating efficiency (89.6%). The morphology and release profiles were also charactered by transmission electron microscope [1] and dialysis method, respectively. Strikingly, the mucus penetration of Gal-N-CMCS/CyA NPs exceeded 90% within 90 min. The Gal-N-CMCS NPs internalized by macrophages were 3.3-fold higher than CMCS-N NPs, thereby, enhancing the anti-inflammatory activities of NPs. Meanwhile, these NPs exhibited excellent biocompatibility, reduced the toxic effect of CyA, and targeting ability on inflammatory macrophages both in vitro and in vivo. Most importantly, in vivo studies revealed that CyA NPs could efficiently target the inflamed colon, remarkably alleviate inflammation, repair mucosal and reconstructed colonic epithelial barriers in UC mice induced by dextran sulfate sodium (DSS) via Toll-like receptor 4 -Nuclear factor kappa-B (TLR4-NF-κB) pathway. Our findings suggest that these high-performance and facilely fabricated Gal-N-CMCS/CyA NPs could be developed as a promising drug carrier for oral UC treatment.
Collapse
Affiliation(s)
- Mengting Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haonan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suqi Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujun Chen
- The First Affiliated Hospital of Guangxi Medical University, Guangxi 530000, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Zlotnikov ID, Ezhov AA, Ferberg AS, Krylov SS, Semenova MN, Semenov VV, Kudryashova EV. Polymeric Micelles Formulation of Combretastatin Derivatives with Enhanced Solubility, Cytostatic Activity and Selectivity against Cancer Cells. Pharmaceutics 2023; 15:1613. [PMID: 37376064 DOI: 10.3390/pharmaceutics15061613] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Combretastatin derivatives is a promising class of antitumor agents, tubulin assembly inhibitors. However, due to poor solubility and insufficient selectivity to tumor cells, we believe, their therapeutic potential has not been fully realized yet. This paper describes polymeric micelles based on chitosan (a polycation that causes pH and thermosensitivity of micelles) and fatty acids (stearic, lipoic, oleic and mercaptoundecanoic), which were used as a carrier for a range of combretastatin derivatives and reference organic compounds, demonstrating otherwise impossible delivery to tumor cells, at the same time substantially reduced penetration into normal cells. Polymers containing sulfur atoms in hydrophobic tails form micelles with a zeta potential of about 30 mV, which increases to 40-45 mV when cytostatics are loaded. Polymers with tails of oleic and stearic acids form poorly charged micelles. The use of polymeric 400 nm micelles provides the dissolution of hydrophobic potential drug molecules. Micelles could significantly increase the selectivity of cytostatics against tumors, which has been shown using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Fourier transform infrared (FTIR) spectroscopy, flow cytometry and fluorescence microscopy. Atomic force microscopy presented the difference between the unloaded micelles and those loaded with the drug: the size of the former was 30 nm on average, while the latter had a "disc-like" shape and a size of about 450 nm. The loading of drugs into the core of micelles was confirmed by UV and fluorescence spectroscopy methods; shifts of absorption and emission maxima into the long-wavelength region by tens of nm was observed. With FTIR spectroscopy, a high interaction efficiency of micelles with the drug on cells was demonstrated, but at the same time, selective absorption was observed: micellar cytostatics penetrate into A549 cancer cells 1.5-2 times better than the simple form of the drugs. Moreover, in normal HEK293T, the penetration of the drug is reduced. The proposed mechanism for reducing the accumulation of drugs in normal cells is the adsorption of micelles on the cell surface and the preservation of cytostatics to penetrate inside the cells. At the same time, in cancer cells, due to the structural features of the micelles, they penetrate inside, merging with the membrane and releasing the drug by pH- and glutathione-sensitive mechanisms. From a methodological point of view, we have proposed a powerful approach to the observation of micelles using a flow cytometer, which, in addition, allows us to quantify the cells that have absorbed/adsorbed cytostatic fluorophore and distinguish between specific and non-specific binding. Thus, we present polymeric micelles as drug delivery systems in tumors using the example of combretastatin derivatives and model fluorophore-cytostatic rhodamine 6G.
Collapse
Affiliation(s)
- Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander A Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Artem S Ferberg
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Sergey S Krylov
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Marina N Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, Vavilov Street 26, 119334 Moscow, Russia
| | - Victor V Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
19
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
20
|
Negut I, Bita B. Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery. Pharmaceutics 2023; 15:976. [PMID: 36986837 PMCID: PMC10056703 DOI: 10.3390/pharmaceutics15030976] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the "intelligent" drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| |
Collapse
|
21
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
22
|
Herdiana Y, Wathoni N, Gozali D, Shamsuddin S, Muchtaridi M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030879. [PMID: 36986740 PMCID: PMC10051865 DOI: 10.3390/pharmaceutics15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Despite recent advances, cancer remains the primary killer on a global scale. Numerous forms of research have been conducted to discover novel and efficient anticancer medications. The complexity of breast cancer is a major challenge which is coupled with patient-to-patient variations and heterogeneity between cells within the tumor. Revolutionary drug delivery is expected to provide a solution to that challenge. Chitosan nanoparticles (CSNPs) have prospects as a revolutionary delivery system capable of enhancing anticancer drug activity and reducing negative impacts on normal cells. The use of smart drug delivery systems (SDDs) as delivering materials to improve the bioactivity of NPs and to understand the intricacies of breast cancer has garnered significant interest. There are many reviews about CSNPs that present various points of view, but they have not yet described a series in cancer therapy from cell uptake to cell death. With this description, we will provide a more complete picture for designing preparations for SDDs. This review describes CSNPs as SDDSs, enhancing cancer therapy targeting and stimulus response using their anticancer mechanism. Multimodal chitosan SDDs as targeting and stimulus response medication delivery will improve therapeutic results.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), USM, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
23
|
Cheng P, Liang N, Zhao W, Gong X, Wang W, Sun S. Chitosan-based near-infrared fluorescent micelles for controlled drug delivery and bioimaging in cancer therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
24
|
Chitosan or Cyclodextrin Grafted with Oleic Acid Self-Assemble into Stabilized Polymeric Micelles with Potential of Drug Carriers. Life (Basel) 2023; 13:life13020446. [PMID: 36836803 PMCID: PMC9964696 DOI: 10.3390/life13020446] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Polymeric micelles combining the advantages of biocompatible poly- and oligosaccharides with classical micellar amphiphilic systems represent a promising class of drug carriers. In this work, micelles based on chitosan (or cyclodextrin) and oleic acid with various modification degrees were synthesized-the most optimal grafting degree is 15-30% in terms of CMC. According to NTA data, micelles have a hydrodynamic diameter of the main fraction of 60-100 nm. The inclusion of the antibacterial agents: moxifloxacin or rifampicin in micelles was studied by FTIR spectroscopy and fluorescence spectroscopy using a pyrene label (using monomer-excimer approach). When aromatic molecules are incorporated into micelles, the absorption bands of C-H bonds of the fatty tails of micelles shift towards smaller wavenumbers, indicating a stabilization of the micelles structure, and the microenvironment of the drug molecule changes according to the low frequencies shift and intensity changes in oscillation frequencies of 1450 cm-1 corresponding to aromatic fragment. Loading of moxifloxacin and rifampicin into micelles leads to a change in the fluorescent properties: a shift of the maximum of fluorescence emission to the long-wavelength region and an increase in the fluorescence anisotropy due to a drastic increase in the hydrodynamic volume of the fluorophore-containing rotating fragment. Using the pyrene label, the critical micelle concentrations were determined: from 4 to 30 nM depending on the polymer composition. Micellar systems enhance the effect of the antibiotic by increasing the penetration into bacterial cells and storing the drug in a protective coat. As a part of the supramolecular structure, the antibiotic remains active for more than four days, while in free form, the activity decreases after two days. In pharmacokinetic experiments, in vivo moxifloxacin in micellar systems show 1.7 times more efficiency compared to free form; moreover, two times higher maximal concentration in the blood is achieved. The advantage of polymer micellar systems in comparison with simple cyclodextrins and chitosan, which do not so significantly contribute to the antibacterial and pharmacokinetic parameters, was shown. Thus, polymeric micelles are one of the key approaches to improving the effectiveness of antibacterial drugs and solving the problems of resistant bacterial infections and multidrug resistance.
Collapse
|
25
|
Yang F, He Q, Dai X, Zhang X, Song D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front Pharmacol 2023; 14:1143102. [PMID: 36909177 PMCID: PMC9992554 DOI: 10.3389/fphar.2023.1143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignant tumor among women in the world. BC is the heterogeneous tumor with different subtypes including luminal A-like, luminal B-like (HER2-/HER2+), HER2 enriched, and triple-negative BC. The therapeutic strategies including surgery, chemotherapy, radiotherapy, targeted therapy, and endocrine therapy are well developed and commonly used in the treatment of BC. However, some adverse effects of these conventional treatments limited their wide application in clinical. Therefore, it is necessary to develop more safe and more efficient individualized treatment strategies of the BC. Nanomedicine, as the most promising strategy for controlled and targeted drug delivery, is widely used in multiple aspects of cancer therapy. Importantly, accumulative evidences show that nanomedicine has achieved good outcomes in the treatment of BC and a huge amount of BC patients benefited from the nanomedicine related treatments. In this review, we summarized and discussed the major problems occurred during the administration of conventional treatment strategies for BC and the potential roles of nanomedicine in promoting the treatment efficacy of BC by overcoming obstacles of current treatment of BC.
Collapse
Affiliation(s)
- Fan Yang
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Qingjie He
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, Lee YK. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023; 353:1127-1149. [PMID: 36528193 DOI: 10.1016/j.jconrel.2022.12.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
Exosomes are endosome-derived nanovesicles involved in cellular communication. They are natural nanocarriers secreted by various cells, making them suitable candidates for diverse drug delivery and therapeutic applications from a material standpoint. They have a phospholipid bilayer decorated with functional molecules and an enclosed parental matrix, which has attracted interest in developing designer/hybrid engineered exosome nanocarriers. The structural versatility of exosomes allows the modification of their original configuration using various methods, including genetic engineering, chemical procedures, physical techniques, and microfluidic technology, to load exosomes with additional cargo for expanded biomedical applications. Exosomes show enormous potential for overcoming the limitations of conventional nanoparticle-based techniques in targeted therapy. This review highlights the exosome sources, characteristics, state of the art in the field of hybrid exosomes, exosome-like nanovesicles and engineered exosomes as potential cargo delivery vehicles for therapeutic applications.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea
| | | | - Monochura Saha
- Media lab, Massachusetts Institute of Technology (MIT), 75 Amherst Street, Cambridge 02139, USA
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea.
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
27
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
28
|
Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel) 2022; 10:1946. [PMID: 36423041 PMCID: PMC9694785 DOI: 10.3390/vaccines10111946] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccination is still the most cost-effective way to combat infectious illnesses. Conventional vaccinations may have low immunogenicity and, in most situations, only provide partial protection. A new class of nanoparticle-based vaccinations has shown considerable promise in addressing the majority of the shortcomings of traditional and subunit vaccines. This is due to recent breakthroughs in chemical and biological engineering, which allow for the exact regulation of nanoparticle size, shape, functionality, and surface characteristics, resulting in improved antigen presentation and robust immunogenicity. A blend of physicochemical, immunological, and toxicological experiments can be used to accurately characterize nanovaccines. This narrative review will provide an overview of the current scenario of the nanovaccine.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Guwahati 781017, Assam, India
| | - Farak Ali
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | | |
Collapse
|
29
|
Jin GW, Rejinold NS, Choy JH. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel) 2022; 14:polym14224839. [PMID: 36432965 PMCID: PMC9696676 DOI: 10.3390/polym14224839] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Polymeric micelles, nanosized assemblies of amphiphilic polymers with a core-shell architecture, have been used as carriers for various therapeutic compounds. They have gained attention due to specific properties such as their capacity to solubilize poorly water-soluble drugs, biocompatibility, and the ability to accumulate in tumor via enhanced permeability and retention (EPR). Moreover, additional functionality can be provided to the micelles by a further modification. For example, micelle surface modification with targeting ligands allows a specific targeting and enhanced tumor accumulation. The introduction of stimuli-sensitive groups leads to the drug's release in response to environment change. This review highlights the progress in the development of multifunctional polymeric micelles in the field of cancer therapy. This review will also cover some examples of multifunctional polymeric micelles that are applied for tumor imaging and theragnosis.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
| | | | - Jin-Ho Choy
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence:
| |
Collapse
|
30
|
Sampathi S, Tiriya PK, Dodoala S, Junnuthula V, Dyawanapelly S. Development of Biocompatible Ciprofloxacin-Gold Nanoparticle Coated Sutures for Surgical Site Infections. Pharmaceutics 2022; 14:pharmaceutics14102130. [PMID: 36297565 PMCID: PMC9608442 DOI: 10.3390/pharmaceutics14102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Surgical site infections (SSIs) are mainly observed after surgeries that use biomaterials. The aim of this present work was to develop ciprofloxacin hydrochloride (CPH)-loaded gold nanoparticles. These ciprofloxacin-gold nanoparticles were coated onto a sterile surgical suture using an adsorption technique, followed by rigidization via ionotropic crosslinking using sodium alginate. Furthermore, UV-visible spectroscopy, infrared spectroscopy, and scanning electron microscopy were used to characterize the samples. The particle size of the nanoparticles was 126.2 ± 13.35 nm with a polydispersity index of 0.134 ± 0.03, indicating nanosize formation with a monodispersed system. As per the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines, stability studies were performed for 30 days under the following conditions: 2-8 °C, 25 ± 2 °C/60 ± 5% RH, and 40 ± 2 °C/75 ± 5% RH. For both Gram-negative and Gram-positive bacteria, the drug-coupled nanoparticle-laden sutures showed a twofold higher zone of inhibition compared with plain drug-coated sutures. In vitro drug release studies showed a prolonged release of up to 180 h. Hemolysis and histopathology studies displayed these sutures' acceptable biocompatibility with the healing of tissue in Albino Swiss mice. The results depict that the use of antibiotic-coated sutures for preventing surgical site infection for a long duration could be a viable clinical option.
Collapse
Affiliation(s)
- Sunitha Sampathi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad 502329, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
- Correspondence: (S.S.); (V.J.); (S.D.)
| | - Pankaj Kumar Tiriya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sujatha Dodoala
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Viswavidyalayam, Tirupati 517502, India
| | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
- Correspondence: (S.S.); (V.J.); (S.D.)
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai 400019, India
- Correspondence: (S.S.); (V.J.); (S.D.)
| |
Collapse
|
31
|
Pharmacokinetics and Anti-Diabetic Studies of Gliclazide Nanosuspension. Pharmaceutics 2022; 14:pharmaceutics14091947. [PMID: 36145695 PMCID: PMC9500859 DOI: 10.3390/pharmaceutics14091947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Gliclazide (GCZ), an antidiabetic medication, has poor solubility and limited oral bioavailability due to substantial first-pass metabolism. Thus, the purpose of the current study was to optimize and formulate a GCZ nanosuspension (NS) employing the antisolvent precipitation technique. A three-factor, three-level Box–Behnken design (BBD) was used to examine the impact of the primary formulation factors (drug concentration, stabilizer, and surfactant %) on particle size. The optimized NS contains 29.6 mg/mL drug, 0.739% lecithin, and 0.216% sodium dodecyl sulfate (SDS). Under scanning microscopy, the topography of NS revealed spherical particles. Furthermore, NS had a much better saturation solubility than the pure material, which resulted in a rapid dissolving rate, which was attributed to the amorphous structure and smaller particle size of the NS particles. Studies on intestinal permeability using the in vitro noneverted intestinal sac gut method (duodenum, jejunum, and ileum) and single-pass intestinal permeability (SPIP) techniques showed that the effective permeability was also increased by more than 3 fold. In the pharmacokinetic study, the Cmax and AUC0–t values of NS were approximately 3.35- and 1.9-fold higher than those of the raw medication and marketed formulation (MF). When compared to plain drug and commercial formulations, the antidiabetic efficacy of NS demonstrated that it had a significant impact on lowering glucose levels.
Collapse
|