1
|
Simila HO, Anselmi C, Cardoso LM, Dal-Fabbro R, Beltrán AM, Bottino MC, Boccaccini AR. Sol-gel-derived calcium silicate cement incorporating collagen and mesoporous bioglass nanoparticles for dental pulp therapy. Dent Mater 2024; 40:1832-1842. [PMID: 39183074 DOI: 10.1016/j.dental.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Calcium silicate cements (CSCs) are often used in endodontics despite some limitations related to their physical properties and antibacterial efficacy. This study aimed to develop and demonstrate the viability of a series of CSCs that were produced by sol-gel method and further modified with mesoporous bioactive glass nanoparticles (MBGNs) and collagen, for endodontic therapy. METHODS Calcium silicate (CS) particles and MBGNs were synthesized by the sol-gel method, and their elemental, molecular, and physical microstructure was characterized. Three CSCs were developed by mixing the CS with distilled water (CS+H2O), 10 mg/mL collagen solution (CS+colH2O), and MBGNs (10 %) (CSmbgn+colH2O). The mixing (MT) and setting (ST) times of the CSCs were determined, while the setting reaction was monitored in real-time. Antibacterial efficacy against Enterococcus faecalis (E. faecalis) and regenerative potential on dental pulp stem cells (DPSCs) were also analyzed. RESULTS The CS+H2O displayed a ST comparable to commercial products, while CSmbgn+colH2O achieved the longest MT of 68 s and the shortest ST of 8 min. All the experimental CSCs inhibited the growth of E. faecalis. Additionally, compared to the control group, CSCs supported cell proliferation and spreading and mineralized matrix production, regardless of their composition. SIGNIFICANCE Tested CSCs presented potential as candidates for pulp therapy procedures. Future research should investigate the pulp regeneration mechanisms alongside rigorous antibacterial evaluations, preferably with multi-organism biofilms, executed over extended periods.
Collapse
Affiliation(s)
- Hazel O Simila
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Lais M Cardoso
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Seville, Spain
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Mohamed A, Ismail E, Adam RZ. A Comparison of Conventional Root Canal Sealers With Ones That Use Green Synthesized Nanoparticles for Antimicrobial Activity: Protocol for a Systematic Review. JMIR Res Protoc 2024; 13:e51351. [PMID: 39393053 PMCID: PMC11512129 DOI: 10.2196/51351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Root canal failure and secondary endodontic infection are frequent clinical scenarios in dentistry. The main microorganisms implicated in root canal therapy failure are persistent Enterococcus faecalis, Candida albicans, and Staphylococcus aureus. To combat the impact of disease resistance, scientists are concentrating on alternative antimicrobial root canal sealers. Nanomaterials are a recent development in endodontic materials that exhibit great antimicrobial properties, making them an ideal material choice for root canal sealers. OBJECTIVE This systematic review aims to compare the antimicrobial properties of conventional root canal sealers to those incorporating green synthesized nanoparticles between 2010 and 2024. METHODS A well-constructed protocol was established and registered with PROSPERO (CRD42021286373). Ethics approval was obtained from the Biomedical Research and Ethics Committee from the University of the Western Cape (UWC; BM22/1/4). PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols) reporting guidelines were followed. The included criteria demonstrate the green synthesized nanoparticles studies where the nanoparticles (NPs) are incorporated in root canal sealers. MeSH (Medical Subject Headings) terms were used for the search strategy of the systematic electronic databases for articles published in English between 2010 and 2024. The selected databases included Scopus, PubMed, Web of Science, Science Direct, EBSCOhost, SpringerLink, and Wiley Online. A quality assessment tool for laboratory studies will be used to critically appraise the included studies. If applicable, statistical measures (mean, SD, etc) will be used for data analysis and presentation of the results. RESULTS The protocol is registered with PROSPERO. A preliminary search was conducted using a determined search strategy across 8 electronic databases, and the review is now complete. CONCLUSIONS It is anticipated that the results of this systematic review may reveal the increased interest and application for nanoparticle-enhanced root canal sealers. This will aid in the future development of root canal sealants and mitigate the risk of endodontic failure. TRIAL REGISTRATION PROSPERO CRD42021286373; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=286373. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51351.
Collapse
Affiliation(s)
- Abubaker Mohamed
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Belville, Cape Town, South Africa
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Belville, Cape Town, South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al-Azhar University, Cairo, Egypt
| | - Razia Z Adam
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Belville, Cape Town, South Africa
| |
Collapse
|
3
|
López-García S, Sánchez-Bautista S, García-Bernal D, Lozano A, Forner L, Sanz JL, Murcia L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Premixed calcium silicate-based ceramic sealers promote osteogenic/cementogenic differentiation of human periodontal ligament stem cells: A microscopy study. Microsc Res Tech 2024; 87:1584-1597. [PMID: 38433562 DOI: 10.1002/jemt.24545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
To evaluate the effects of premixed calcium silicate based ceramic sealers on the viability and osteogenic/cementogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The materials evaluated were TotalFill BC Sealer (TFbc), AH Plus Bioceramic Sealer (AHPbc), and Neosealer Flo (Neo). Standardized discs and 1:1, 1:2, and 1:4 eluates of the tested materials were prepared. The following in vitro experiments were carried out: ion release, cell metabolic activity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell migration, immunofluorescence experiment, cell attachment, gene expression, and mineralization assay. Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test (p < .05). Increased Ca2+ release was detected in TFbc compared to AHPbc and Neo (*p < .05). Biological assays showed a discrete cell metabolic activity and cell migration in Neo-treated cell, whereas scanning electronic microscopy assay exhibited that TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc (***p < .001). All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells (***p < .001). Our results suggested that TFbc promotes cell differentiation, both by increasing the expression of key osteo/odontogenic genes and by promoting mineralization of the extracellular matrix, whereas this phenomenon was less evident in Neo and AHPbc. RESEARCH HIGHLIGHTS: TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc. All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | | | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Adrián Lozano
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - José L Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, Murcia, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| |
Collapse
|
4
|
Al-Sabawi NA, Al-Jubori SH. Interfacial adaptation of newly prepared nano-tricalcium silicate-58s bioactive glass-based endodontic sealer. J Dent Res Dent Clin Dent Prospects 2024; 18:115-122. [PMID: 39071217 PMCID: PMC11282200 DOI: 10.34172/joddd.40729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/29/2024] [Indexed: 07/30/2024] Open
Abstract
Background The sealer's interfacial adaptability is one of the critical factors for successful root canal therapy. This study evaluated and compared the interfacial adaptability of newly prepared nano-tricalcium silicate-58s bioactive glass-based endodontic sealer (C3 S-BG-P) to root dentin with two bioactive sealers Nishika Canal Sealer BG and BioRootTM RCS. Methods Thirty newly extracted single-rooted lower premolars were decoronated and instrumented. The roots were assigned to three groups: C3 S-BG-P, Nishika Canal Sealer BG, and BioRootTM RCS (n=10) and obturated with the single-cone method. Each root was sectioned horizontally to obtain three slices at 2, 5, and 10 mm from the apex. The width of the gaps at the sealer‒dentin interface from each section's mesial and distal sides was measured under a field emission scanning electron microscope (FESEM) at×1.0 using the Digimizer software program. One-way ANOVA and post hoc Tukey tests for multiple comparisons were used to interpret and analyze the collected data. Results The mean gap width at the sealer‒dentin interface of C3 S-BG-P and Nishika Canal Sealer BG was significantly less than that of BioRootTM RCS at all root sections (P≤0.05). However, the mean gap width at the sealer‒dentin interface of C3 S-BG-P was not significantly different from Nishika Canal Sealer BG (P>0.05). Moreover, there were greater interfacial gaps at the apical level than at the coronal level for all the tested sealers. Conclusion C3 S-BG-P exhibited interfacial adaptation that was nearly comparable to Nishika Canal Sealer BG and superior to BioRootTM RCS.
Collapse
Affiliation(s)
- Nawal A. Al-Sabawi
- Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
| | | |
Collapse
|
5
|
Afkhami F, Chen Y, Walsh LJ, Peters OA, Xu C. Application of Nanomaterials in Endodontics. BME FRONTIERS 2024; 5:0043. [PMID: 38711803 PMCID: PMC11070857 DOI: 10.34133/bmef.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
Recent advancements in nanotechnology have introduced a myriad of potential applications in dentistry, with nanomaterials playing an increasing role in endodontics. These nanomaterials exhibit distinctive mechanical and chemical properties, rendering them suitable for various dental applications in endodontics, including obturating materials, sealers, retro-filling agents, and root-repair materials. Certain nanomaterials demonstrate versatile functionalities in endodontics, such as antimicrobial properties that bolster the eradication of bacteria within root canals during endodontic procedures. Moreover, they offer promise in drug delivery, facilitating targeted and controlled release of therapeutic agents to enhance tissue regeneration and repair, which can be used for endodontic tissue repair or regeneration. This review outlines the diverse applications of nanomaterials in endodontics, encompassing endodontic medicaments, irrigants, obturating materials, sealers, retro-filling agents, root-repair materials, as well as pulpal repair and regeneration. The integration of nanomaterials into endodontics stands poised to revolutionize treatment methodologies, presenting substantial potential advancements in the field. Our review aims to provide guidance for the effective translation of nanotechnologies into endodontic practice, serving as an invaluable resource for researchers, clinicians, and professionals in the fields of materials science and dentistry.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Yuan Chen
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Laurence J. Walsh
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Ove A. Peters
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Chun Xu
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre,
The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
6
|
Al-Sabawi NA, Al-Jubori SH. Physical-chemical properties and acellular bioactivity of newly prepared nano-tricalcium silicate-58s bioactive glass-based endodontic sealer. J Oral Biosci 2023; 65:305-315. [PMID: 37716424 DOI: 10.1016/j.job.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVES To evaluate the physiochemical properties and apatite-forming ability of a newly prepared nano-tricalcium silicate-58s bioactive glass-based endodontic sealer (C3S-BG-P) and compare its results with the Nishika BG canal sealer and BioRoot™ RCS. METHODS The physicochemical properties (setting time, flow, solubility, film thickness, and radiopacity) of C3S-BG-P, Nishika BG canal sealer, and BioRoot™ RCS were evaluated in accordance with ANSI/ADA 57/2000 (reaffirmed 2012) and ISO 6876:2012 for root canal sealing materials. The in vitro apatite-forming ability was evaluated after 28 days of immersion of disc-shaped specimens in phosphate-buffered saline (PBS) using field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. RESULTS The results of physiochemical tests indicated that all the tested sealers complied with the ADA and ISO standards; however, the solubility of the BioRoot did not meet the two standards. C3S-BG-P revealed significantly superior properties in all physicochemical tests compared to Nishika and BioRoot; however, the solubility of Nishika was significantly lower than that of C3S-BG-P. Furthermore, all tested sealers exhibited apatite precipitation on their surfaces after 28 days of immersion in PBS. CONCLUSIONS C3S-BG-P had superior physicochemical properties, which mitigated the disadvantages of calcium silicate-based sealers. Moreover, it exhibited apatite precipitation after immersion in PBS. Further in vivo studies utilizing animal models or clinical studies are necessary to support the rationale of the newly developed sealer for clinical application.
Collapse
Affiliation(s)
- Nawal A Al-Sabawi
- Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq.
| | - Sawsan Hameed Al-Jubori
- Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq.
| |
Collapse
|
7
|
Irshad N, Jahanzeb N, Alqasim A, Bousaleh R, Almehrij M, Ghafoor S, Nawaz M, Akhtar S, Tufail Shah A, Khan AS. Synthesis and analyses of injectable fluoridated-bioactive glass hydrogel for dental root canal sealing. PLoS One 2023; 18:e0294446. [PMID: 38011158 PMCID: PMC10681180 DOI: 10.1371/journal.pone.0294446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to synthesize fluoride-doped bioactive glass (F-BG) based thermo-sensitive injectable hydrogel for endodontic applications. The structural and phase analyses were done with Fourier Transform Infrared spectroscopy and X-ray Diffraction, respectively. The setting time of prepared injectable was investigated at 21°C (in the presence and absence of an ultrasonic scalar) and at 37°C. Flowability was tested according to ISO-6876:2012 specifications, whereas injectability was checked by extrusion method using 21-, 22-, and 23-gauge needles. The in vitro bio-adhesion and push-out bond strength were studied on days 7 and 90 and compared with the commercially available TotalFill®. The ion release profile was analyzed for up to 30 days with Inductively Coupled Plasma Optical Emission Spectroscopy. The fluoride release analysis was conducted periodically for up to 21 days in deionized water and artificial saliva using an ion-selective electrode. The final setting time at 21°C, 21°C+ultrasonic scalar, and 37°C were 38.66±3.21, 29.12±1.23, and 32±3.46 min, respectively. The flowability was 25±3.94 mm, and the injectability coefficient was ≥70.3 for 22, 21, and 57% in a 23-gauge needle. Fluoride release in deionized water was found to be significantly higher than in artificial saliva and increased with time. A significant difference in bond strength was found between days 7 and 90, where the strength was increased, and a new apatite layer was formed on the tooth surface. A rapid release of calcium, phosphate, and silicon ions was seen initially, whereby the continuous release of these ions was observed for up to 30 days. The prepared F-BG injectable hydrogel has shown promising results and has the potential to be used as an endodontic sealer.
Collapse
Affiliation(s)
- Nadia Irshad
- Department of Dental Materials, University of Health Sciences, Lahore, Pakistan
- Department of Dental Materials, Sharif Medical and Dental College, Lahore, Pakistan
| | - Noureen Jahanzeb
- Department of Dental Materials, University of Health Sciences, Lahore, Pakistan
| | - Alanood Alqasim
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Dental and Oral Health Department, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Raneem Bousaleh
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maha Almehrij
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sarah Ghafoor
- Department of Oral Biology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Iqbal K, Alhomrany R, Berman LH, Chogle S. Enhancement of Antimicrobial Effect of Endodontic Sealers Using Nanoparticles: A Systematic Review. J Endod 2023; 49:1238-1248. [PMID: 37481123 DOI: 10.1016/j.joen.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
INTRODUCTION The elimination of biofilms during root canal therapy continues to pose a challenge due to complex anatomies and uninstrumented portions of the root canal system. The incorporation of nanoparticles in endodontic sealers is an area of interest for potentially enhancing antimicrobial activity and improving treatment outcomes. This systematic review evaluated the antimicrobial effects of various nanoparticles in endodontic sealers. METHODS Comprehensive literature review was conducted using the electronic Embase, Web of Science, and PubMed databases followed by citation searching for articles eligible per the inclusion criteria. RESULTS A total of 1845 citations were screened, of which 13 articles met the inclusion criteria and were included in this review. All included articles were in vitro studies with low-to-moderate quality assessment scores. The incorporation of select nanoparticles was associated with significant enhancement of antibacterial effects in planktonic and/or biofilm forms, whereas other nanoparticles were not. CONCLUSIONS The incorporation of certain types and concentrations of nanoparticles into endodontic sealers displayed antimicrobial effects in vitro. The need for well-designed clinical studies translating in vitro findings into clinical practice is warranted. The incorporation of nanoparticles may enhance the antimicrobial properties of endodontic sealers and may improve treatment outcomes.
Collapse
Affiliation(s)
- Kisa Iqbal
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts.
| | - Rami Alhomrany
- Department of Restorative Dental Sciences, College of Dentistry, Najran University, Najran, Kingdom of Saudi Arabia
| | - Louis H Berman
- Department of Endodontics, University of Maryland School of Dentistry, Baltimore, Maryland
| | - Sami Chogle
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|