1
|
van der Veer MAA, de Haan TR, Franken LGW, Groenendaal F, Dijk PH, de Boode WP, Simons S, Dijkman KP, van Straaten HL, Rijken M, Cools F, Nuytemans DHGM, van Kaam AH, Bijleveld YA, Mathôt RAA. Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia. Ther Drug Monit 2024; 46:376-383. [PMID: 38287875 PMCID: PMC11078285 DOI: 10.1097/ftd.0000000000001166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH. METHODS The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed. RESULTS The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters. CONCLUSIONS The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.
Collapse
Affiliation(s)
- Marlotte A. A. van der Veer
- Department of Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Timo R. de Haan
- Department of Neonatology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Linda G. W. Franken
- Department of Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Peter H. Dijk
- Division of Neonatology, Department of Pediatrics, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, the Netherlands
| | - Willem P. de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Sinno Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Koen P. Dijkman
- Department of Neonatology, Máxima Medical Center Veldhoven, Veldhoven, The Netherlands
| | | | - Monique Rijken
- Department of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Filip Cools
- Department of Neonatology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Debbie H. G. M. Nuytemans
- Department of Neonatology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Anton H. van Kaam
- Department of Neonatology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Yuma. A. Bijleveld
- Department of Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ron A. A. Mathôt
- Department of Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Črček M, Grabnar I, Zdovc JA, Grosek Š, Kos MK. External validation of population pharmacokinetic models of gentamicin in paediatric population from preterm newborns to adolescents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:175-194. [PMID: 37307377 DOI: 10.2478/acph-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
The aim of this study was to externally validate the predictive performance of published population pharmacokinetic models of gentamicin in all paediatric age groups, from preterm newborns to adolescents. We first selected published population pharmacokinetic models of gentamicin developed in the paediatric population with a wide age range. The parameters of the literature models were then re-estimated using the PRIOR subroutine in NONMEM®. The predictive ability of the literature and the tweaked models was evaluated. Retrospectively collected data from a routine clinical practice (512 concentrations from 308 patients) were used for validation. The models with covariates characterising developmental changes in clearance and volume of distribution had better predictive performance, which improved further after re-estimation. The tweaked model by Wang 2019 performed best, with suitable accuracy and precision across the complete paediatric population. For patients treated in the intensive care unit, a lower proportion of patients would be expected to reach the target trough concentration at standard dosing. The selected model could be used for model-informed precision dosing in clinical settings where the entire paediatric population is treated. However, for use in clinical practice, the next step should include additional analysis of the impact of intensive care treatment on gentamicin pharmacokinetics, followed by prospective validation.
Collapse
Affiliation(s)
- Mateja Črček
- 1University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, 1000 Ljubljana Slovenia
| | - Iztok Grabnar
- 1University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, 1000 Ljubljana Slovenia
| | - Jurij Aguiar Zdovc
- 1University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, 1000 Ljubljana Slovenia
| | - Štefan Grosek
- 2University of Ljubljana, Faculty of Medicine, Department of Pediatrics 1000 Ljubljana, Slovenia
- 3University Medical Centre Ljubljana Division of Obstetrics and Gynecology, Department of Perinatology Neonatology Section, 1000 Ljubljana Slovenia
- 4University Medical Centre Ljubljana Division of Paediatrics, Department of Paediatric Intensive Therapy, 1000 Ljubljana, Slovenia
| | - Mojca Kerec Kos
- 1University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, 1000 Ljubljana Slovenia
| |
Collapse
|