1
|
Alshihri AA, Khan SU, Alissa M, Alnoud MAH, Shams Ul Hassan S, Alghamdi SA, Mushtaq RY, Albariqi AH, Almhitheef AI, Anthony S, Sheirdil RA, Murshed A. Nano guardians of the heart: A comprehensive investigation into the impact of silver nanoparticles on cardiovascular physiology. Curr Probl Cardiol 2024; 49:102542. [PMID: 38527698 DOI: 10.1016/j.cpcardiol.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Globally, cardiovascular diseases (CVDs) constitute the leading cause of death at the moment. More effective treatments to combat CVDs are urgently required. Recent advances in nanotechnology have opened the door to new avenues for cardiovascular health treatment. Silver nanotechnology's inherent therapeutic powers and wide-ranging applications have made it the center of focus in recent years. This review aims to analyze the chemical, physical, and biological processes ofproducing AgNPs and determine their potential utility as theranostics. Despite significant advances, the precise mechanism by which AgNPs function in numerous biological systems remains a mystery. We hope that at the end of this review, you will better understand how AgNPs affect the cardiovascular system from the research done thus far. This endeavor thoroughly investigates the possible toxicological effects and risks associated with exposure to AgNPs. The findings shed light on novel applications of these versatile nanomaterials and point the way toward future research directions. Due to a shortage of relevant research, we will limit our attention to AgNPs as they pertain to CVDs. Future research can use this opportunity to investigate the many medical uses of AgNPs. Given their global prevalence, we fully endorse academics' efforts to prioritize nanotechnological techniques in pursuing risk factor targeting for cardiovascular diseases. The critical need for innovative solutions to this widespread health problem is underscored by the fact that this technique may help with the early diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Abdulaziz A Alshihri
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112; USA
| | - Syed Shams Ul Hassan
- Department of Natural product chemistry, School of Pharmacy, Shanghai Jiao Tong Unviversity, Shanghai, China
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China.
| | | | - Abduh Murshed
- Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, China
| |
Collapse
|
2
|
Hu WY, Mao HT, Yin XY, Chen JY, He AQ, Huang LY, Zhang ZW, Yuan S, Yuan M, Su YQ, Chen YE. Melatonin alleviates Hg toxicity by modulating redox homeostasis and the urea cycle in moss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167958. [PMID: 37866616 DOI: 10.1016/j.scitotenv.2023.167958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Mercury (Hg) is a highly toxic metal and can cause severe damage to many organisms under natural conditions. As an effective free radical scavenger and antioxidant, Melatonin (MT) has played important protective roles in alleviating oxidative damage caused by environmental cues including heavy metal stress in plants. However, the detailed mechanisms of melatonin in alleviating Hg toxicity still remain unclear in plants. Our results showed that the application of melatonin greatly reduced the concentrations of total and intracellular Hg in Taxiphyllum taxirameum. Meanwhile, melatonin significantly improved the antioxidant capacity and thus alleviated oxidative damage to the chloroplasts of T. taxirameum under Hg stress. Metabolic pathway analysis further revealed that melatonin-treated plants exhibited higher levels of 48 metabolites, including sugars, amino acids, and lipids, than non-melatonin-treated plants under Hg stress. Additionally, we further found that melatonin addition greatly improved the concentrations of four organic acids and three amino acids (Orn, Cit and Arg) related to the urea cycle, and thereby changed the levels of putrescine (Put) and spermidine (Spd) in T. taxirameum exposed to Hg stress. Further experiments showed that the high concentration of Put dramatically caused oxidative damage under Hg stress, while Spd effectively alleviated Hg toxicity in T. taxirameum. Taken together, this study provides new insight into the underlying mechanisms of melatonin in alleviating heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Wen-Yue Hu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Hao-Tian Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Xiao-Yan Yin
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Jing-Yi Chen
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - An-Qi He
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Lin-Yan Huang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, 611130 Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130 Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, 610066 Chengdu, China.
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Liao Z, Liu X, Fan D, Sun X, Zhang Z, Wu P. Autophagy-mediated nanomaterials for tumor therapy. Front Oncol 2023; 13:1194524. [PMID: 38192627 PMCID: PMC10773885 DOI: 10.3389/fonc.2023.1194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/30/2023] [Indexed: 01/10/2024] Open
Abstract
Autophagy is a lysosomal self-degradation pathway that plays an important protective role in maintaining intracellular environment. Deregulation of autophagy is related to several diseases, including cancer, infection, neurodegeneration, aging, and heart disease. In this review, we will summarize recent advances in autophagy-mediated nanomaterials for tumor therapy. Firstly, the autophagy signaling pathway for tumor therapy will be reviewed, including oxidative stress, mammalian target of rapamycin (mTOR) signaling and autophagy-associated genes pathway. Based on that, many autophagy-mediated nanomaterials have been developed and applied in tumor therapy. According to the different structure of nanomaterials, we will review and evaluate these autophagy-mediated nanomaterials' therapeutic efficacy and potential clinical application.
Collapse
Affiliation(s)
- Zijian Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xingjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
5
|
Komatsu Y, Yoshitomi T, Doan VTH, Kurokawa H, Fujiwara S, Kawazoe N, Chen G, Matsui H. Locally Administered Photodynamic Therapy for Cancer Using Nano-Adhesive Photosensitizer. Pharmaceutics 2023; 15:2076. [PMID: 37631290 PMCID: PMC10459333 DOI: 10.3390/pharmaceutics15082076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Photodynamic therapy (PDT) is a great potential anti-tumor therapy owing to its non-invasiveness and high spatiotemporal selectivity. However, systemically administered photosensitizers diffuse in the skin and the eyes for a long duration, which cause phototoxicity to bright light and sunlight. Therefore, following PDT, patients must avoid exposure of to light and sunlight to avoid this phototoxicity. In this study, we have developed a locally administered PDT using nano-adhesive porphyrin with polycations consisting of quaternary ammonium salt groups (aHP) as a photosensitizer. The aHP, approximately 3.0 nm in diameter, adhered the negatively charged cell membrane via electrostatic interaction. The aHP localized to the endosome via cell adhesion and induced apoptosis upon 635 nm light irradiation. On being administered subcutaneously on the tumor, 30% of the injected aHP remained in the administered sites. However, low-molecular-weight hematoporphyrin dihydrochloride (HP) disappeared due to rapid diffusion. PDT with locally administered aHP showed a higher anti-tumor effect after light irradiation at 635 nm for three days compared to low-molecular-weight HP. Intraperitoneal administration of HP caused severe phototoxicity upon irradiation with ultraviolet A at 10 J cm-2, whereas aHP did not cause phototoxicity because its diffusion into the skin could be suppressed, probably due to the high-molecular weight of aHP. Therefore, locally administered PDT with aHP is a potential PDT having high therapeutic efficacy without phototoxicity.
Collapse
Affiliation(s)
- Yoshiki Komatsu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Van Thi Hong Doan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Hiromi Kurokawa
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Saori Fujiwara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| |
Collapse
|
6
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
7
|
Adamo FM, Silva Barcelos EC, De Falco F, Dorillo E, Rompietti C, Sorcini D, Stella A, Del Papa B, Baldoni S, Esposito A, Geraci C, Arcaleni R, Pennetta C, Ragonese F, Moretti L, Mameli M, Di Ianni M, Rosati E, Fioretti B, Sportoletti P. Therapeutic Targeting Potential of Novel Silver Nanoparticles Coated with Anti-CD20 Antibody against Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:3618. [PMID: 37509279 PMCID: PMC10377400 DOI: 10.3390/cancers15143618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is an incurable disorder associated with alterations in several pathways essential for survival and proliferation. Despite the advances made in CLL therapy with the new target agents, in some cases, relapses and resistance could occur, making the discovery of new alternatives to manage CLL refractoriness necessary. To provide new therapeutic strategies for CLL, we investigated the anti-leukemic activity of silver nanoparticles (AgNPs), whose impact on CLL cells has been poorly explored. METHODS We studied the action mechanisms of AgNPs in vitro through flow cytometry and molecular analyses. To improve the bioavailability of AgNPs, we generated AgNPs coated with the anti-CD20 antibody Rituximab (AgNPs@Rituximab) and carried out imaging-based approaches and in vivo experiments to evaluate specificity, drug uptake, and efficacy. RESULTS AgNPs reduced the viability of primary CLL cells and the HG-3 cell line by inducing an intrinsic apoptotic pathway characterized by Bax/Bcl-2 imbalance, caspase activation, and PARP degradation. Early apoptotic events triggered by AgNPs included enhanced Ca2+ influx and ROS overproduction. AgNPs synergistically potentiated the cytotoxicity of Venetoclax, Ibrutinib, and Bepridil. In vitro, the AgNPs@Rituximab conjugates were rapidly internalized within CLL cells and strongly prolonged the survival of CLL xenograft models compared to each unconjugated single agent. CONCLUSIONS AgNPs showed strong anti-leukemic activity in CLL, with the potential for clinical translation in combination with agents used in CLL. The increased specificity of AgNPs@Rituximab toward CLL cells could be relevant for overcoming in vivo AgNPs' non-specific distribution and increasing their efficacy.
Collapse
Affiliation(s)
- Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Estevao Carlos Silva Barcelos
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória 29043-900, Brazil
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Chiara Rompietti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Stefano Baldoni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Clelia Geraci
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Chiara Pennetta
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy
| | - Lorenzo Moretti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Mariagrazia Mameli
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06129 Perugia, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|