1
|
Sundar S, Singh VK, Agrawal N, Singh OP, Kumar R. Investigational new drugs for the treatment of leishmaniasis. Expert Opin Investig Drugs 2024; 33:1029-1046. [PMID: 39225742 DOI: 10.1080/13543784.2024.2400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Over the past 20 years, significant progress has been made in anti-leishmanial therapy. Three new drugs/formulations are available for the treatment of various forms of leishmaniasis, namely oral miltefosine, paromomycin and liposomal amphotericin B. However, these advances in drug development have added considerable complexity for clinicians including toxicity, emergence of resistance and decreased sensitivity of available drugs. The development of newer drugs with less toxicity and more efficacy is urgently needed. AREAS COVERED This review comprehensively examines the latest developments and current status of antileishmanial drugs for the treatment of leishmaniasis across the world. Several new investigational drugs that showed anti-leishmanial activity under in vitro or in vivo conditions and either underwent the phase-I/II clinical trials or are on the verge of entering the trials were reviewed. We also delve into the challenges of drug resistance and discuss the emergence of new and effective antileishmanial compounds. EXPERT OPINION The available treatments for leishmaniasis are limited in number, toxic, expensive, and demand extensive healthcare resources. Every available antileishmanial drug is associated with several disadvantages, such as drug resistance and toxicity or high cost. Miltefosine is potentially teratogenic. New antileishmanial drugs/treatment modalities are sorely needed for expanding future treatment options.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Agrawal
- Department of Medicine, University of Florida, Jacksonville, FL, USA
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Basotra SD, Kumari Y, Vij M, Tyagi A, Sharma D, Bhattacharyya MS. ASLdC3: A Derivative of Acidic Sophorolipid Disrupts Mitochondrial Function, Induces ROS Generation, and Inhibits Biofilm Formation in Candida albicans. ACS Infect Dis 2024; 10:3185-3201. [PMID: 39093050 DOI: 10.1021/acsinfecdis.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fungal infections account for more than 140 million cases of severe and life-threatening conditions each year, causing approximately 1.7 million deaths annually. Candida albicans and related species are the most common human fungal pathogens, causing both superficial (mucosal and cutaneous) and life-threatening invasive infections (candidemia) with a 40-75% mortality rate. Among many virulence factors of Candida albicans, morphological transition from yeast to hyphae, secretion of hydrolytic enzymes, and formation of biofilms are considered to be crucial for pathogenicity. However, the arsenals for the treatment against these pathogens are restricted to only a few classes of approved drugs, the efficacy of which is being compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. In this study, we have described the development of a molecule, exhibiting excellent antifungal activity (MIC 8 μg/mL), by tailoring acidic sophorolipids with aryl alcohols via enzyme catalysis. This novel derivative, ASLdC3, is a surface-active compound that lowers the surface tension of the air-water interface up to 2-fold before reaching the critical micelle concentration of 25 μg/mL. ASLdC3 exhibits excellent antibiofilm properties against Candida albicans and other nonalbicans Candida species. The molecule primarily exhibits its antifungal activity by perturbing mitochondrial function through the alteration of the mitochondrial membrane potential (MMP) and generation of reactive oxygen species (ROS). The ROS damages fungal cell membrane function and cell wall integrity, eventually leading to cell death. ASLdC3 was found to be nontoxic in in vitro assay and nonhemolytic. Besides, it does not cause toxicity in the C. elegans model. Our study provides a valuable foundation for the potential of acidic sophorolipid as a nontoxic, biodegradable precursor for the design and synthesis of novel molecules for use as antimicrobial drugs as well as for other clinical applications.
Collapse
Affiliation(s)
- Sandal Deep Basotra
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Yachna Kumari
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vij
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Arpit Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Deepak Sharma
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| |
Collapse
|
3
|
Wasan KM. Development and deployment of a solid oral amphotericin B dosage form to treat visceral leishmaniasis within a pediatric population. PLoS Negl Trop Dis 2024; 18:e0012500. [PMID: 39325693 PMCID: PMC11426499 DOI: 10.1371/journal.pntd.0012500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Visceral leishmaniasis (VL) is a severe and potentially fatal infection, with over 90% of reported cases occurring in East African countries including Chad, Djibouti, Eritrea, Ethiopia, Kenya, Somalia, South Sudan, Sudan, and Uganda, affecting mainly impoverished individuals, and creating a significant economic burden. Currently, the intravenous single-dose liposomal amphotericin B is the first choice for the treatment of VL. Recently, WHO and DNDi have suggested a combination of intravenous liposomal amphotericin B and oral miltefosine as a potential approach to treat VL. However, miltefosine availability is uncertain, and its side effects frequently cause treatment to be discontinued. Furthermore, due to the difficult route of liposomal amphotericin B administration by intravenous infusion, the lack of formulation's tropical stability, accessibility, injection toxicity, and cost have prevented this injectable formulation of amphotericin B from reaching the most infected populations, particularly the pediatric population. To solve this problem, the development of a solid oral amphotericin B formulation that is cost-effective, safe, tropically stable, and easy to swallow, making it more accessible to children, particularly in rural communities having limited access to medical clinics or trained healthcare professionals is imperative. This viewpoint will discuss the opportunities and challenges of developing an oral amphotericin B formulation for a pediatric population.
Collapse
Affiliation(s)
- Kishor M Wasan
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Neglected Global Diseases Initiative, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
He X, Peng X, Zhang S, Yang T, Huo J, Zhang Y. Hepatoprotective effect of diammonium glycyrrhizinate and neuroprotective effect of piperazine ferulate on AmB-induced liver and kidney injury by suppressing apoptosis in vitro and in vivo. Toxicon 2024; 246:107795. [PMID: 38849008 DOI: 10.1016/j.toxicon.2024.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Amphotericin B (AmB) induced liver and kidney injury is often responsible for hepatic and renal dysfunction. Therefore, the protection strategy on liver and renal functions in patients treated with AmB should be emphasized. In this paper, diammonium glycyrrhizinate (DG) and piperazine ferulate (PF) were taken as the research object to study its hepatoprotective and neuroprotective effect on AmB-induced liver and kidney damage in vitro and in vivo. The microplate method and ELISA kits were employed for the biochemical detection in the serum and urine of mice. Flow cytometric analysis and western blotting analysis were conducted to study the mechanism of DG and PF. Our results confirmed the prevention capacity of DG and PF on AmB-induced liver and kidney injury through the alleviation of pathological changes and enzyme reducing action. Furthermore, DG and PF suppressed ROS-mediated mitochondrial apoptosis in AmB-treated mice and cells through Caspase pathway and Caspase-independent AIF pathway. In summary, DG and PF could protect AmB-induced hepatotoxicity and nephrotoxicity by disrupting oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Xu He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; Hanzhong Central Hospital, Hanzhong, 723000, PR China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an, 710061, PR China
| | - Suyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an, 710061, PR China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an, 710061, PR China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an, 710061, PR China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an, 710061, PR China.
| |
Collapse
|
5
|
Prajapat VM, Aalhate M, Sriram A, Mahajan S, Maji I, Gupta U, Kumari D, Singh K, Kalia NP, Dua K, Singh SK, Singh PK. Amphotericin B loaded nanoemulsion: Optimization, characterization and in-vitro activity against L. donovani promastigotes. Parasitol Int 2024; 100:102848. [PMID: 38159836 DOI: 10.1016/j.parint.2023.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The present work aimed to develop and evaluate AmB-loaded nano-emulsion (AmB-NE) which will augment the solubility of AmB and lead to enhanced anti-leishmanial activity. The composition of AmB-NE was optimized by systematic screening followed by DoE-extreme vertices mixture design. The optimized NE revealed mean droplet size and PDI of 44.19 ± 5.5 nm, 0.265 ± 0.0723, respectively. The NE could efficiently encapsulate AmB with drug content and efficiency 83.509 ± 0.369% and 81.659 ± 0.013%, respectively. The presence of cholesterol and stearyl amine retarded the release (P < 0.0001) of AmB significantly compared to AmB suspension. The AmB-NE and pure AmB suspension demonstrated the IC50 of 0.06309 μg/mL and 0.3309 μg/mL against L.donovani promastigotes after 48 h incubation. The formulation was robust at all exaggerated stability conditions such as freeze-thaw and centrifugation. These findings indicate that AmB-NE is an attractive approach to treat visceral leishmaniasis with improved activity.
Collapse
Affiliation(s)
- Vikram Mohanlal Prajapat
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitin Pal Kalia
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
6
|
Zadeh Mehrizi T, Mosaffa N, Vodjgani M, Ebrahimi Shahmabadi H. Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011-2023): a systematic review. Nanotoxicology 2024; 18:231-258. [PMID: 38646931 DOI: 10.1080/17435390.2024.2340467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Amphotericin B (AmB) is a broad-spectrum therapeutic and effective drug, but it has serious side effects of toxicity and solubility. Therefore, reducing its toxicity should be considered in therapeutic applications. Nanotechnology has paved the way to improve drug delivery systems and reduce toxicity. The present study, for the first time, comprehensively reviews the studies from 2011 to 2023 on reducing the in vitro toxicity of AmB. The findings showed that loading AmB with micellar structures, nanostructured lipid carriers, liposomes, emulsions, poly lactide-co-glycolide acid, chitosan, dendrimers, and other polymeric nanoparticles increases the biocompatibility and efficacy of the drug and significantly reduces toxicity. In addition, modified carbon nanoparticles (including graphene, carbon nanotubes, and carbon dots) with positively charged amine groups, PEI, and other components showed favorable drug delivery properties. Uncoated and coated magnetic nanoparticles and silver NPs-AmB composites had less cytotoxicity and more antifungal activity than free AmB. Citrate-reduced GNPs and lipoic acid-functionalized GNPs were also effective nanocarriers to reduce AmB cytotoxicity and improve anti-leishmania efficacy. In addition, zinc oxide-NPs and PEGylated zinc oxide-NPs showed favorable antifungal activity and negligible toxicity. According to a review study, carbon-based nanoparticles, metal nanoparticles, and especially polymer nanoparticles caused some reduction in the toxicity and improved solubility of AmB in water. Overall, considering the discussed nanocarriers, further research on the application of nanotechnology as a cost-effective candidate to improve the efficiency and reduce the cytotoxicity of AmB is recommended.
Collapse
Affiliation(s)
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
7
|
Sharifi N, Alitaneh Z, Asadi S, Vahidinia Z, Aghaei Zarch SM, Esmaeili A, Bagheri-Mohammadi S, Najafi S, Mazhari Y. Developing nanosize carrier systems for Amphotericin-B: A review on the biomedical application of nanoparticles for the treatment of leishmaniasis and fungal infections. Biotechnol J 2024; 19:e2300462. [PMID: 38073122 DOI: 10.1002/biot.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
New formulations of Amphotericin-B (Am-B), the most popular therapeutic drug for many human infections such as parasitic and fungal pathogens, are safe, economical, and effective in the world. Several newly designed carrier systems for Am-B can also be considered orally with sufficient gastrointestinal permeability and good solubility. However, the clinical application of several new formulations of Am-B with organ cytotoxicity, low bioavailability, high costs, and technical problems have caused some issues. Therefore, more attention and scientific design are required to progress safe and effective drug delivery systems. Currently, the application of nano-based technology and nanomaterials in the advancement of drug delivery systems exhibits promising outcomes to cure many human systemic infections. Designing novel drug delivery systems including solid lipid nanostructured materials, lipo-polymersomes, drug conjugates and microneedles, liposomes, polymer and protein-based nanostructured materials, dendrimers, emulsions, mixed micelles, polymeric micelles, cyclodextrins, nanocapsules, and nanocochleate for Am-B has many advantages to reducing several related issues. The unique properties of nanostructured particles such as proper morphology, small size, surface coatings, and, electrical charge, permit scientists to design new nanocomposite materials against microorganisms for application in various human diseases. These features have made these nanoparticles an ideal candidate for drug delivery systems in clinical approaches to cure a number of human disorders and currently, several therapeutic nanostructured material formulations are under different stages of clinical tests. Hence, this scientific paper mainly discussed the advances in new formulations of Am-B for the treatment of human systemic infections and related clinical tests.
Collapse
Affiliation(s)
- Neda Sharifi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Sahar Asadi
- Department of Community and Family Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yosra Mazhari
- Department of Microbiology and Infectious Diseases Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kristensen S, Hassan K, Andersen NS, Steiniger F, Kuntsche J. Feasibility of the preparation of cochleate suspensions from naturally derived phosphatidylserines. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1241368. [PMID: 37745179 PMCID: PMC10512065 DOI: 10.3389/fmedt.2023.1241368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cochleates are cylindrical particles composed of dehydrated phospholipid bilayers. They are typically prepared by addition of calcium ions to vesicles composed of negatively charged phospholipids such as phosphatidylserines (PS). Due to their high physical and chemical stability, they provide an interesting alternative over other lipid-based drug formulations for example to improve oral bioavailability or to obtain a parenteral sustained-release formulation. Methods In the present study, the feasibility to prepare cochleate suspensions from soy lecithin-derived phosphatidylserines (SPS) was investigated and compared to the "gold standard" dioleoyl-phosphatidylserine (DOPS) cochleates. The SPS lipids covered a large range of purities between 53 and >96% and computer-controlled mixing was evaluated for the preparation of the cochleate suspensions. Electron microscopic investigations were combined with small-angle x-ray diffraction (SAXD) and Laurdan generalized polarization (GP) analysis to characterize particle structure and lipid organization. Results Despite some differences in particle morphology, cochleate suspensions with similar internal lipid structure as DOPS cochleates could be prepared from SPS with high headgroup purity (≥96%). Suspensions prepared from SPS with lower purity still revealed a remarkably high degree of lipid dehydration and well-organized lamellar structure. However, the particle shape was less defined, and the typical cochleate cylinders could only be detected in suspensions prepared with higher amount of calcium ions. Finally, the study proves the feasibility to prepare suspensions of cochleates or cochleate-like particles directly from a calcium salt of soy-PS by dialysis.
Collapse
Affiliation(s)
- Søren Kristensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Khadeija Hassan
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Judith Kuntsche
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|