1
|
Seth P, Xing E, Hendrickson AD, Li K, Monsen R, Chaires JB, Neidle S, Yatsunyk LA. Interaction of N-methylmesoporphyrin IX with a hybrid left-/right-handed G-quadruplex motif from the promoter of the SLC2A1 gene. Nucleic Acids Res 2024:gkae1208. [PMID: 39704129 DOI: 10.1093/nar/gkae1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Left-handed G-quadruplexes (LHG4s) belong to a class of recently discovered noncanonical DNA structures under the larger umbrella of G-quadruplex DNAs (G4s). The biological relevance of these structures and their ability to be targeted with classical G4 ligands is underexplored. Here, we explore whether the putative LHG4 DNA sequence from the SLC2A1 oncogene promoter maintains its left-handed characteristics upon addition of nucleotides in the 5'- and 3'-direction from its genomic context. We also investigate whether this sequence interacts with a well-established G4 binder, N-methylmesoporphyrin IX (NMM). We employed biophysical and X-ray structural studies to address these questions. Our results indicate that the sequence d[G(TGG)3TGA(TGG)4] (termed here as SLC) adopts a two-subunit, four-tetrad hybrid left-/right-handed G4 (LH/RHG4) topology. Addition of 5'-G or 5'-GG abolishes the left-handed fold in one subunit, while the addition of 3'-C or 3'-CA maintains the original fold. X-ray crystal structure analyses show that SLC maintains the same hybrid LH/RHG4 fold in the solid state and that NMM stacks onto the right-handed subunit of SLC. NMM binds to SLC with a 1:1 stoichiometry and a moderate-to-tight binding constant of 15 μM-1. This work deepens our understanding of LHG4 structures and their binding with traditional G4 ligands.
Collapse
Affiliation(s)
- Paul Seth
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081USA
| | - Eric Xing
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081USA
| | - Andrew D Hendrickson
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081USA
| | - Kevin Li
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081USA
| | - Robert Monsen
- UofL Health, Brown Cancer Center, University of Louisville, 529 S. Jackson Street Louisville, KY, 40202USA
| | - Jonathan B Chaires
- UofL Health, Brown Cancer Center, University of Louisville, 529 S. Jackson Street Louisville, KY, 40202USA
| | - Stephen Neidle
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Liliya A Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081USA
| |
Collapse
|
2
|
Satta G, Trajkovski M, Cantara A, Mura M, Meloni C, Olla G, Dobrovolná M, Pisano L, Gaspa S, Salis A, De Luca L, Mocci F, Brazda V, Plavec J, Carraro M. Complex Biophysical and Computational Analyses of G-Quadruplex Ligands: The Porphyrin Stacks Back. Chemistry 2024; 30:e202402600. [PMID: 39291646 PMCID: PMC11632414 DOI: 10.1002/chem.202402600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
G-quadruplexes (G4 s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl) porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. This study enabled the synthesis of tetracationic porphyrin derivatives that exhibited binding and stabilizing capacity against G-quadruplex structures; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4 s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl) porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.
Collapse
Affiliation(s)
- Giuseppe Satta
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)Via Celso Ulpiani 27Bari70126Italy
| | - Marko Trajkovski
- Slovenian NMR CentreNational Institute of ChemistryLjubljanaSI-1000Slovenia
| | - Alessio Cantara
- Institute of BiophysicsCzech Academy of SciencesKrálovopolská 135612 65BrnoCzech Republic
| | - Monica Mura
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Claudia Meloni
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Giulia Olla
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Michaela Dobrovolná
- Institute of BiophysicsCzech Academy of SciencesKrálovopolská 135612 65BrnoCzech Republic
| | - Luisa Pisano
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)Via Celso Ulpiani 27Bari70126Italy
| | - Silvia Gaspa
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
| | - Andrea Salis
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Lidia De Luca
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
| | - Francesca Mocci
- Department of Chemistry and Geological ScienceUniversity of CagliariCittadella UniversitariaI-09042MonserratoItaly
| | - Vaclav Brazda
- Institute of BiophysicsCzech Academy of SciencesKrálovopolská 135612 65BrnoCzech Republic
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryLjubljanaSI-1000Slovenia
- EN→FIST Centre of ExcellenceTrg OF 13SI-1000LjubljanaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVecna pot 113SI-1000LjubljanaSlovenia
| | - Massimo Carraro
- Department of ChemicalPhysical, Mathematical and Natural SciencesUniversity of SassariVia Vienna 2Sassari07100Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)Via Celso Ulpiani 27Bari70126Italy
| |
Collapse
|
3
|
Banerjee N, Roy L, Panda S, Roychowdhury T, Chatterjee S. In Silico-Designed G-Quadruplex Targeting Peptide Attenuates VEGF-A Expression, Preventing Angiogenesis in Cancer Cells. Chem Biol Drug Des 2024; 104:e70018. [PMID: 39704035 DOI: 10.1111/cbdd.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a growth factor and pluripotent cytokine that promotes angiogenesis in cancer cells, transitioning to an angiogenic phenotype. The binding of VEGF-A protein to VEGF receptors (VEGFR-1 and VEGFR-2) initiates a cascade of events that stimulates angiogenesis by facilitating the migration and enhancing the permeability of endothelial cells. The proximal promoter of the VEGF gene encompasses a 36-base pair region (from -85 to -50) that can form a stable G-quadruplex (G4) structure in specific conditions. The activity of the VEGF promoter is reliant on this structure. During cancer progression, the VEGF-A G4 succumbs to cellular pressure and fails to maintain a stable structure. This shifts the balance to form a duplex structure, increasing the transcription rate. Earlier research has tried to develop small-molecule ligands to target and stabilise G4, demonstrating the possibility of suppressing VEGF expression. However, they either lack specificity or toxic. Peptides, on the other hand, are significantly less studied as G4 binders. Here, we designed a peptide that successfully binds and stabilises the VEGF-A G4 while reducing its gene expression. This further alters the expression fate of the VEGF-A signalling cascade and blocks angiogenesis in cancer cells. We employed high-resolution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulation to elucidate the chemical details of G4-peptide interaction. In addition, we used qPCR and western blot techniques to investigate the expression pattern of the molecules implicated in the VEGF-A signalling cascade. The study explores the intricate relationship between peptides and quadruplex structures, revealing valuable insights that can improve the design of pharmacophores targeting the dynamic quadruplex structure. The results of our study are encouraging, opening possibilities for advancements in, the characterisation and optimisation of peptides as G-quadruplex ligands in view of their potential therapeutic uses.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Non-Coding Genome Group, Department of Structural Biology, CEITEC-Central European Institute of Technology, Brno, Czech Republic
| | - Laboni Roy
- Department of Biological Science, Bose Institute, Unified Academic Campus, Kolkata, India
| | - Suman Panda
- Department of Biological Science, Bose Institute, Unified Academic Campus, Kolkata, India
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Subhrangsu Chatterjee
- Department of Biological Science, Bose Institute, Unified Academic Campus, Kolkata, India
| |
Collapse
|
4
|
Reed CR, Kennedy SD, Horowitz RH, Keedakkatt Puthenpeedikakkal AM, Stern HA, Mathews DH. Modeling and NMR Data Elucidate the Structure of a G-Quadruplex-Ligand Interaction for a Pu22T-Cyclometalated Iridium(III) System. J Phys Chem B 2024; 128:11634-11643. [PMID: 39560366 PMCID: PMC11613442 DOI: 10.1021/acs.jpcb.4c06262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Cyclometalated iridium(III) complexes are increasingly being developed for application in G-quadruplex (GQ) nucleic acid biosensors. We monitored the interactions of a GQ structure with an iridium(III) complex by nuclear magnetic resonance (NMR) titrations and subsequently compared the binding site inferred from NMR with binding positions modeled by molecular docking and molecular dynamics simulations. When titrated into a solution of G-quadruplex Pu22T, compound 1(PF6), [Ir(ppy)2(pizp)](PF6), where ppy is 2-phenylpyridine and pizp is 2-phenylimidazole[4,5f][1,10]phenanthroline, had the greatest impact on the hydrogen chemical shifts of G5, G8, G9, G13, and G17 residues of Pu22T, indicating end-stacking at the 5' tetrad. In blind cross-docking studies with Autodock 4, end-stacking at the 5' tetrad was found as the lowest energy binding position. AMBER molecular dynamics simulations resulted in a refined binding position at the 5' tetrad with improved pi stacking. For this model system, Pu22T-1, molecular docking and molecular dynamics simulations are tools that are able to predict the experimentally determined binding position.
Collapse
Affiliation(s)
- Carly R. Reed
- Department
of Chemistry and Biochemistry, SUNY Brockport, Brockport, New York 14420, United States
| | - Scott D. Kennedy
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Rachel H. Horowitz
- Department
of Chemistry and Biochemistry, SUNY Brockport, Brockport, New York 14420, United States
| | | | - Harry A. Stern
- Orogen
Therapeutics, 12 Gill
Street Suite 4200, Woburn, Massachusetts 01801, United States
| | - David H. Mathews
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
5
|
Figueiredo J, Djavaheri-Mergny M, Ferret L, Mergny JL, Cruz C. Harnessing G-quadruplex ligands for lung cancer treatment: A comprehensive overview. Drug Discov Today 2023; 28:103808. [PMID: 38414431 DOI: 10.1016/j.drudis.2023.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 02/29/2024]
Abstract
Lung cancer (LC) remains a leading cause of mortality worldwide, and new therapeutic strategies are urgently needed. One such approach revolves around the utilization of four-stranded nucleic acid secondary structures, known as G-quadruplexes (G4), which are formed by G-rich sequences. Ligands that bind selectively to G4 structures present a promising strategy for regulating crucial cellular processes involved in the progression of LC, rendering them potent agents for lung cancer treatment. In this review, we offer a summary of recent advancements in the development of G4 ligands capable of targeting specific genes associated with the development and progression of lung cancer.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; Faculté de Médecine, Université de Paris Saclay, Paris, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120 Palaiseau, France.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
6
|
De Piante E, D'Aria F, Napolitano LMR, Amato J, Pirrello S, Onesti S, Giancola C. Exploring the G-quadruplex binding and unwinding activity of the bacterial FeS helicase DinG. Sci Rep 2023; 13:12610. [PMID: 37537265 PMCID: PMC10400533 DOI: 10.1038/s41598-023-39675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Despite numerous reports on the interactions of G-quadruplexes (G4s) with helicases, systematic analysis addressing the selectivity and specificity of each helicase towards a variety of G4 topologies are scarce. Among the helicases able to unwind G4s are those containing an iron-sulphur (FeS) cluster, including both the bacterial DinG (found in E. coli and several pathogenic bacteria) and the medically important eukaryotic homologues (XPD, FancJ, DDX11 and RTEL1). We carried out a detailed study of the interactions between the E. coli DinG and a variety of G4s, by employing physicochemical and biochemical methodologies. A series of G4-rich sequences from different genomic locations (promoter and telomeric regions), able to form unimolecular G4 structures with diverse topologies, were analyzed (c-KIT1, KRAS, c-MYC, BCL2, Tel23, T30695, Zic1). DinG binds to most of the investigated G4s with little discrimination, while it exhibits a clear degree of unwinding specificity towards different G4 topologies. Whereas previous reports suggested that DinG was active only on bimolecular G4s, here we show that it is also able to bind to and resolve the more physiologically relevant unimolecular G4s. In addition, when the G4 structures were stabilized by ligands (Pyridostatin, PhenDC3, BRACO-19 or Netropsin), the DinG unwinding activity decreased and in most cases was abolished, with a pattern that is not simply explained by a change in binding affinity. Overall, these results have important implications for the biochemistry of helicases, strongly suggesting that when analysing the G4 unwinding property of an enzyme, it is necessary to investigate a variety of G4 substrates.
Collapse
Affiliation(s)
- Elisa De Piante
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Luisa M R Napolitano
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Simone Pirrello
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Trieste, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
7
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
8
|
Libera V, Ripanti F, Petrillo C, Sacchetti F, Ramos-Soriano J, Galan MC, Schirò G, Paciaroni A, Comez L. Stability of Human Telomeric G-Quadruplexes Complexed with Photosensitive Ligands and Irradiated with Visible Light. Int J Mol Sci 2023; 24:ijms24109090. [PMID: 37240437 DOI: 10.3390/ijms24109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Guanine-rich DNA sequences can fold into non-canonical nucleic acid structures called G-quadruplexes (G4s). These nanostructures have strong implications in many fields, from medical science to bottom-up nanotechnologies. As a result, ligands interacting with G4s have attracted great attention as candidates in medical therapies, molecular probe applications, and biosensing. In recent years, the use of G4-ligand complexes as photopharmacological targets has shown significant promise for developing novel therapeutic strategies and nanodevices. Here, we studied the possibility of manipulating the secondary structure of a human telomeric G4 sequence through the interaction with two photosensitive ligands, DTE and TMPyP4, whose response to visible light is different. The effect of these two ligands on G4 thermal unfolding was also considered, revealing the occurrence of peculiar multi-step melting pathways and the different attitudes of the two molecules on the quadruplex stabilization.
Collapse
Affiliation(s)
- Valeria Libera
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Francesco Sacchetti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Maria Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Giorgio Schirò
- CNRS, CEA, IBS, c/o University Grenoble Alpes, 38400 Grenoble, France
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
9
|
Platella C, Criscuolo A, Riccardi C, Gaglione R, Arciello A, Musumeci D, DellaGreca M, Montesarchio D. Exploring the Binding of Natural Compounds to Cancer-Related G-Quadruplex Structures: From 9,10-Dihydrophenanthrenes to Their Dimeric and Glucoside Derivatives. Int J Mol Sci 2023; 24:ijms24097765. [PMID: 37175474 PMCID: PMC10178421 DOI: 10.3390/ijms24097765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
In-depth studies on the interaction of natural compounds with cancer-related G-quadruplex structures have been undertaken only recently, despite their high potential as anticancer agents, especially due to their well-known and various bioactivities. In this frame, aiming at expanding the repertoire of natural compounds able to selectively recognize G-quadruplexes, and particularly focusing on phenanthrenoids, a mini-library including dimeric (1-3) and glucoside (4-5) analogues of 9,10-dihydrophenanthrenes, a related tetrahydropyrene glucoside (6) along with 9,10-dihydrophenanthrene 7 were investigated here by several biophysical techniques and molecular docking. Compounds 3 and 6 emerged as the most selective G-quadruplex ligands within the investigated series. These compounds proved to mainly target the grooves/flanking residues of the hybrid telomeric and parallel oncogenic G-quadruplex models exploiting hydrophobic, hydrogen bond and π-π interactions, without perturbing the main folds of the G-quadruplex structures. Notably, a binding preference was found for both ligands towards the hybrid telomeric G-quadruplex. Moreover, compounds 3 and 6 proved to be active on different human cancer cells in the low micromolar range. Overall, these compounds emerged as useful ligands able to target G-quadruplex structures, which are of interest as promising starting scaffolds for the design of analogues endowed with high and selective anticancer activity.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- Institute of Biostructures and Bioimages, CNR, 80134 Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- CINMPIS-Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
10
|
Li F, Zhou J. G-quadruplexes from non-coding RNAs. J Mol Med (Berl) 2023:10.1007/s00109-023-02314-7. [PMID: 37069370 DOI: 10.1007/s00109-023-02314-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Non-coding RNAs (ncRNAs) are significant regulators of gene expression in a wide range of biological processes, such as transcription, RNA maturation, or translation. ncRNAs interplay with proteins or other RNAs through not only classical sequence-based mechanisms but also unique higher-order structures such as RNA G-quadruplexes (rG4s). rG4s are predictably formed in guanine-rich sequences and are closely related to various human diseases, such as tumors, neurodegenerative diseases, and infections. This review focuses on the vital role of rG4s in ncRNAs, particularly lncRNAs and miRNAs. We outline the dynamic balance between rG4s and RNA stem-loop/hairpin structures and the interplay between ncRNAs and interactors, thereby modulating gene expression and disease progression. A complete understanding of the biological regulatory role and mechanism of rG4s in ncRNAs affirms the critical importance of folding into the appropriate three-dimensional structure in maintaining or modulating the functions of ncRNAs. It makes them novel therapeutic targets for adjusting potential-G4-containing-ncRNAs-associated diseases.
Collapse
Affiliation(s)
- Fangyuan Li
- Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
11
|
Gao C, Deng J, Anwar N, Umer M, Chen J, Wu Q, Dong X, Xu H, He Y, Wang Z. Molecular crowding promotes the aggregation of parallel structured G-quadruplexes. Int J Biol Macromol 2023; 240:124442. [PMID: 37062387 DOI: 10.1016/j.ijbiomac.2023.124442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
G-quadruplexes are widely distributed in cells and are usually essential in mediating biological processes. The intracellular environment is often in a state of molecular crowding, and the current research considerably focuses on the effect of molecular crowding on the conformation of telomeric G-quadruplexes. However, G-quadruplex-forming oligonucleotides are primarily located in the promoter region of the proto-oncogene and on mRNA inside the cell and are reported to fold into parallel structures. Thus, studying the interaction mechanism between ligands and parallel structured G-quadruplexes under crowding conditions is crucial for the design of drugs targeting G-quadruplexes. In our study, molecular crowding was simulated through polyethylene glycol with an average molecular weight of 200 (PEG200) to investigate the parallel structure of the canonical G-quadruplexes c-KIT1, c-MYC, and 32KRAS and their interactions with ligands. Circular dichroism (CD) spectral scanning, fluorescence resonance energy transfer (FRET), and native polyacrylamide gel electrophoresis (PAGE) analysis revealed that molecular crowding failed to induce oligonucleotides to form parallel G-quadruplex structures in the explored model sequences while induced telomeric G-rich sequences to form antiparallel G-quadruplexes in solution without K+. Molecular crowding did not induce changes in their parallel structures but promoted the formation of G-quadruplex aggregates. Moreover, to some extent, molecular crowding also induced a looser structure of the monomer G-quadruplexes. Further studies showed that molecular crowding did not alter the binding stoichiometry of the ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate (RHPS4) to c-KIT1, while it inhibited its interaction with parallel structured G-quadruplexes. This work provides new insights into developing anticancer drugs targeting parallel structured G-quadruplexes.
Collapse
Affiliation(s)
- Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 40074, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
12
|
Selective Targeting of Cancer-Related G-Quadruplex Structures by the Natural Compound Dicentrine. Int J Mol Sci 2023; 24:ijms24044070. [PMID: 36835480 PMCID: PMC9959918 DOI: 10.3390/ijms24044070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Aiming to identify highly effective and selective G-quadruplex ligands as anticancer candidates, five natural compounds were investigated here, i.e., the alkaloids Canadine, D-Glaucine and Dicentrine, as well as the flavonoids Deguelin and Millettone, selected as analogs of compounds previously identified as promising G-quadruplex-targeting ligands. A preliminary screening with the G-quadruplex on the Controlled Pore Glass assay proved that, among the investigated compounds, Dicentrine is the most effective ligand of telomeric and oncogenic G-quadruplexes, also showing good G-quadruplex vs. duplex selectivity. In-depth studies in solution demonstrated the ability of Dicentrine to thermally stabilize telomeric and oncogenic G-quadruplexes without affecting the control duplex. Interestingly, it showed higher affinity for the investigated G-quadruplex structures over the control duplex (Kb~106 vs. 105 M-1), with some preference for the telomeric over the oncogenic G-quadruplex model. Molecular dynamics simulations indicated that Dicentrine preferentially binds the G-quadruplex groove or the outer G-tetrad for the telomeric and oncogenic G-quadruplexes, respectively. Finally, biological assays proved that Dicentrine is highly effective in promoting potent and selective anticancer activity by inducing cell cycle arrest through apoptosis, preferentially targeting G-quadruplex structures localized at telomeres. Taken together, these data validate Dicentrine as a putative anticancer candidate drug selectively targeting cancer-related G-quadruplex structures.
Collapse
|