1
|
Sherif AY, Alshora DH, Ibrahim MA, Jreebi A. Development and Evaluation of Solidified Supersaturated SNEDDS Loaded with Triple Combination Therapy for Metabolic Syndrome. AAPS PharmSciTech 2024; 25:209. [PMID: 39237698 DOI: 10.1208/s12249-024-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The present study aimed to develop and optimize solidified supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) for the combined administration of antihypertensive, antihyperglycemic, and antihyperlipidemic drugs to enhance their solubility and dissolution during the treatment of metabolic syndrome. Various SNEDDS formulations were prepared and subjected to pharmaceutical assessment. The solubility of candesartan (CC), glibenclamide (GB), and rosuvastatin (RC) in SNEDDS and supersaturated SNEDDS formulations was evaluated. The optimized formulation was solidified using Syloid adsorbent at different ratios. Pharmaceutical characterization of the formulations included particle size, zeta potential, in-vitro dissolution, PXRD, FTIR, and SEM analysis. The prepared optimized formulation (F6) was able to form homogeneous nanoemulsion droplets without phase separation, which is composed of Tween 20: PEG-400: Capmul MCM (4: 3: 3). It was mixed with 5% PVP-K30 to prepare a supersaturated liquid SNEDDS formulation (F9). In addition, it was found that the addition of PVP-K30 significantly increased solubility CC and GB from 20.46 ± 0.48 and 6.73 ± 0.05 to 27.67 ± 1.72 and 9.45 ± 0.32 mg/g, respectively. In-vitro dissolution study revealed that liquid and solid SNEDD formulations remarkably improved the dissolution rates of CC, GB, and RC compared to pure drugs. XRPD and FTIR analysis revealed that all drugs present in an amorphous state within prepared solidified supersaturated SNEDDS formulation. SEM images showed that liquid SNEDDS formulation was successfully adsorbed on the surface of Syloid. Overall, optimized F9 and solidified supersaturated SNEDDS formulations showed superior performance in enhancing drug solubility and dissolution rate. The present study revealed that the proposed triple combination therapy of metabolic syndrome holds a promising strategy during the treatment of metabolic syndrome. Further in-vivo studies are required to evaluate the therapeutic efficacy of prepared solidified supersaturated SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Adel Jreebi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Corrie L, Singh H, Gulati M, Vishwas S, Chellappan DK, Gupta G, Paiva-Santos AC, Veiga F, Alotaibi F, Alam A, Eri RD, Prasher P, Adams J, Paudel KR, Dua K, Singh SK. Polysaccharide-fecal microbiota-based colon-targeted self-nanoemulsifying drug delivery system of curcumin for treating polycystic ovarian syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6721-6743. [PMID: 38507103 DOI: 10.1007/s00210-024-03029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The gut microbiome is involved in the pathogenesis of many diseases including polycystic ovarian syndrome (PCOS). Modulating the gut microbiome can lead to eubiosis and treatment of various metabolic conditions. However, there is no proper study assessing the delivery of microbial technology for the treatment of such conditions. The present study involves the development of guar gum-pectin-based solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing curcumin (CCM) and fecal microbiota extract (FME) for the treatment of PCOS. The optimized S-SNEDDS containing FME and CCM was prepared by dissolving CCM (25 mg) in an isotropic mixture consisting of Labrafil M 1944 CS, Transcutol P, and Tween-80 and solidified using lactose monohydrate, aerosil-200, guar gum, and pectin (colon-targeted CCM solid self-nanoemulsifying drug delivery system [CCM-CT-S-SNEDDS]). Pharmacokinetic and pharmacodynamic evaluation was carried out on letrozole-induced female Wistar rats. The results of pharmacokinetic studies indicated about 13.11 and 23.48-fold increase in AUC of CCM-loaded colon-targeted S-SNEDDS without FME (CCM-CT-S-SNEDDS (WFME)) and CCM-loaded colon-targeted S-SNEDDS with FME [(CCM-CT-S-SNEDDS (FME)) as compared to unprocessed CCM. The pharmacodynamic study indicated excellent recovery/reversal in the rats treated with CCM-CT-S-SNEDDS low and high dose containing FME (group 13 and group 14) in a dose-dependent manner. The developed formulation showcasing its improved bioavailability, targeted action, and therapeutic activity in ameliorating PCOS can be utilized as an adjuvant therapy for developing a dosage form, scale-up, and technology transfer.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Hardeep Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Faisal Alotaibi
- Department of Pharmacology, College of Pharmacy (Al-Duwadimi Campus), Shaqra University, Shaqra, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Rajaraman D Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Birla D, Khandale N, Bashir B, ShahbazAlam M, Vishwas S, Gupta G, Dureja H, Kumbhar PS, Disouza J, Patravale V, Veiga F, Paiva-Santos AC, Pillappan R, Paudel KR, Goh BH, Singh M, Dua K, Singh SK. Application of quality by design in optimization of nanoformulations: Principle, perspectives and practices. Drug Deliv Transl Res 2024:10.1007/s13346-024-01681-z. [PMID: 39126576 DOI: 10.1007/s13346-024-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.
Collapse
Affiliation(s)
- Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Md ShahbazAlam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India, 400019
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ramkumar Pillappan
- NITTE (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences [NGSMIPS], Mangaluru, Karnataka, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bey Hing Goh
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Biofunctional Molecule Exploratory Research (BMEX) Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India
| | - Kamal Dua
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
4
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
5
|
Elsewedy HS, Shehata TM, Genedy SM, Siddiq KM, Asiri BY, Alshammari RA, Bukhari SI, Kola-Mustapha AT, Ramadan HA, Soliman WE. Enhancing the Topical Antibacterial Activity of Fusidic Acid via Embedding into Cinnamon Oil Nano-Lipid Carrier. Gels 2024; 10:268. [PMID: 38667687 PMCID: PMC11049292 DOI: 10.3390/gels10040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as a considerable strategy that could improve the therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil (CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil loaded with FA. Applying the Box-Behnken design (BBD) approach, one optimized formula was selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application. The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for stability upon storage at different conditions, at room (25 °C) and refrigerator (4 °C) temperatures, for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that are acceptable for topical application. The in vitro release could be extended for 6 h, providing 52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally, the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph, indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an NE system.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Shaymaa M. Genedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Khuzama M. Siddiq
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Bushra Y. Asiri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Rehab A. Alshammari
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adeola T. Kola-Mustapha
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| | - Wafaa E. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Saudi Arabia
| |
Collapse
|
6
|
Elhoseny SM, Saleh NM, Meshali MM. Self-Nanoemulsion Intrigues the Gold Phytopharmaceutical Chrysin: In Vitro Assessment and Intrinsic Analgesic Effect. AAPS PharmSciTech 2024; 25:54. [PMID: 38443653 DOI: 10.1208/s12249-024-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.
Collapse
Affiliation(s)
- Samar Mohamed Elhoseny
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Corrie L, Ajjarapu S, Banda S, Parvathaneni M, Bolla PK, Kommineni N. HPMCAS-Based Amorphous Solid Dispersions in Clinic: A Review on Manufacturing Techniques (Hot Melt Extrusion and Spray Drying), Marketed Products and Patents. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6616. [PMID: 37895598 PMCID: PMC10608006 DOI: 10.3390/ma16206616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Today, therapeutic candidates with low solubility have become increasingly common in pharmaceutical research pipelines. Several techniques such as hot melt extrusion, spray drying, supercritical fluid technology, electrospinning, KinetiSol, etc., have been devised to improve either or both the solubility and dissolution to enhance the bioavailability of these active substances belonging to BCS Class II and IV. The principle involved in all these preparation techniques is similar, where the crystal lattice of the drug is disrupted by either the application of heat or dissolving it in a solvent and the movement of the fine drug particles is arrested with the help of a polymer by either cooling or drying to remove the solvent. The dispersed drug particles in the polymer matrix have higher entropy and enthalpy and, thereby, higher free energy in comparison to the crystalline drug. Povidone, polymethaacrylate derivatives, hydroxypropyl methyl cellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate derivatives are commonly used as polymers in the preparation of ASDs. Specifically, hydroxypropylmethylcellulose acetate succinate (HPMCAS)-based ASDs have become well established in commercially available products and are widely explored to improve the solubility of poorly soluble drugs. This article provides an analysis of two widely used manufacturing techniques for HPMCAS ASDs, namely, hot melt extrusion and spray drying. Additionally, details of HPMCAS-based ASD marketed products and patents have been discussed to emphasize the commercial aspect.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | | | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
| | - Madhukiran Parvathaneni
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
8
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
9
|
Yu Y, Chen D, Lee YY, Chen N, Wang Y, Qiu C. Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers. Foods 2023; 12:foods12102045. [PMID: 37238863 DOI: 10.3390/foods12102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.
Collapse
Affiliation(s)
- Yasi Yu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
10
|
Parveen SR, Wadhwa S, Babu MR, Vishwas S, Corrie L, Awasthi A, Khan FR, Al-Bazi MM, Alharthi NS, Alotaibi F, Gupta G, Pandey NK, Kumar B, Kumbhar P, Disouza J, Gulati M, Neelamraju J, Madempudi RS, Dua K, Singh SK. Formulation of chrysin loaded nanostructured lipid carriers using Box Behnken design, its characterization and antibacterial evaluation alone and in presence of probiotics co-loaded in gel. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
11
|
DOPE/CHEMS-Based EGFR-Targeted Immunoliposomes for Docetaxel Delivery: Formulation Development, Physicochemical Characterization and Biological Evaluation on Prostate Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15030915. [PMID: 36986777 PMCID: PMC10052572 DOI: 10.3390/pharmaceutics15030915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Docetaxel (DTX) is a non-selective antineoplastic agent with low solubility and a series of side effects. The technology of pH-sensitive and anti-epidermal growth factor receptor (anti-EGFR) immunoliposomes aims to increase the selective delivery of the drug in the acidic tumor environment to cells with EFGR overexpression. Thus, the study aimed to develop pH-sensitive liposomes based on DOPE (dioleoylphosphatidylethanolamine) and CHEMS (cholesteryl hemisuccinate), using a Box–Behnken factorial design. Furthermore, we aimed to conjugate the monoclonal antibody cetuximab onto liposomal surface, as well as to thoroughly characterize the nanosystems and evaluate them on prostate cancer cells. The liposomes prepared by hydration of the lipid film and optimized by the Box–Behnken factorial design showed a particle size of 107.2 ± 2.9 nm, a PDI of 0.213 ± 0.005, zeta potential of −21.9 ± 1.8 mV and an encapsulation efficiency of 88.65 ± 20.3%. Together, FTIR, DSC and DRX characterization demonstrated that the drug was properly encapsulated, with reduced drug crystallinity. Drug release was higher in acidic pH. The liposome conjugation with the anti-EGFR antibody cetuximab preserved the physicochemical characteristics and was successful. The liposome containing DTX reached an IC50 at a concentration of 65.74 nM in the PC3 cell line and 28.28 nM in the DU145 cell line. Immunoliposome, in turn, for PC3 cells reached an IC50 of 152.1 nM, and for the DU145 cell line, 12.60 nM, a considerable enhancement of cytotoxicity for the EGFR-positive cell line. Finally, the immunoliposome internalization was faster and greater than that of liposome in the DU145 cell line, with a higher EGFR overexpression. Thus, based on these results, it was possible to obtain a formulation with adequate characteristics of nanometric size, a high encapsulation of DTX and liposomes and particularly immunoliposomes containing DTX, which caused, as expected, a reduction in the viability of prostate cells, with high cellular internalization in EGFR overexpressing cells.
Collapse
|
12
|
Waiprib Y, Ingrungruengluet P, Worawattanamateekul W. Nanoparticles Based on Chondroitin Sulfate from Tuna Heads and Chitooligosaccharides for Enhanced Water Solubility and Sustained Release of Curcumin. Polymers (Basel) 2023; 15:polym15040834. [PMID: 36850119 PMCID: PMC9965308 DOI: 10.3390/polym15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain and an incubation time of 48 h resulted in a degree of hydrolysis of 93.75 ± 2.94% and a CS content of 59.53 ± 1.77 mg/100 g. The FTIR spectra of extracted CS products exhibited identical functional groups found in commercially available CS. The molecular weights of CS extracted from skipjack and yellowfin tuna heads were 11.0 kDa and 7.7 kDa, respectively. Subsequently, a CH:CS ratio of 3:2 for CS and chitooligosaccharides (CH) was chosen as the optimal ratio for the preparation of spherical nanoparticles, with %EE, mean particle size, PDI, and zeta potential values of 50.89 ± 0.66%, 128.90 ± 3.29 nm, 0.27 ± 0.04, and -12.47 ± 2.06, respectively. The CU content was enhanced to 127.21 ± 1.66 μg/mL. The release of CU from this particular nanosystem involved mainly a drug diffusion mechanism, with a burst release in the first 3 h followed by a sustained release of CU over 24 h. The DPPH and ABTS scavenging activity results confirmed the efficient encapsulation of CU into CHCS nanoparticles. This study will provide a theoretical basis for CS derived from tuna head cartilages to be used as a functional component with specific functional properties in food and biomedical applications.
Collapse
Affiliation(s)
- Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-814592125
| | | | | |
Collapse
|
13
|
Feriotto G, Rondanin R, Marchetti P, Tagliati F, Beninati S, Tabolacci C, Grusi E, Aguzzi S, Mischiati C. Characterization of Stable Pyrazole Derivatives of Curcumin with Improved Cytotoxicity on Osteosarcoma Cell Lines. Life (Basel) 2023; 13:life13020431. [PMID: 36836788 PMCID: PMC9961829 DOI: 10.3390/life13020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Curcumin (CUR) is a natural molecule that is unstable due to the presence of a bis-ketone. To obtain more stable derivatives in biological fluids, the bis-ketone was replaced with pyrazole or O-substituted oximes. Their stability in solution was studied by UV-visible spectrophotometry. The effects on proliferation were studied by MTT assay and/or clonogenicity assay. Induction of apoptosis was evaluated by annexin V staining and Western blot analysis. The bioavailability was obtained from the analysis of the molecular chemical-physical characteristics. The replacement of the bis-ketone with a pyrazole ring or O-substituted oximes improved the stability of all the CUR-derivative molecules. These derivatives were more stable than CUR in solution and were generally cytotoxic on a panel of cancer cell lines tested, and they promoted caspase-dependent apoptosis. Derivative 1 was the most potent in the osteosarcoma (OS) lines. With respect to CUR, this derivative showed cytotoxicity at least three times higher in the MTT assay. In addition, in the clonogenic assay, 1 maintained the activity in conditions of long treatment presumably by virtue of its improved stability in biological fluids. Notably, 1 should have improved chemical-physical characteristics of bioavailability with respect to CUR, which should allow for reaching higher blood levels than those observed in the CUR trials. In conclusion, 1 should be considered in future clinical studies on the treatment of OS, either alone or in combination with other medications currently in use.
Collapse
Affiliation(s)
- Giordana Feriotto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Riccardo Rondanin
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Marchetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Federico Tagliati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elisa Grusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Serena Aguzzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-532-974444
| |
Collapse
|
14
|
Corrie L, Awasthi A, Kaur J, Vishwas S, Gulati M, Kaur IP, Gupta G, Kommineni N, Dua K, Singh SK. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:197. [PMID: 37259345 PMCID: PMC9967581 DOI: 10.3390/ph16020197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600007, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Kamal Dua
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
15
|
Cytotoxicity of Isoxazole Curcumin Analogs on Chronic Myeloid Leukemia-Derived K562 Cell Lines Sensitive and Resistant to Imatinib. Int J Mol Sci 2023; 24:ijms24032356. [PMID: 36768681 PMCID: PMC9916957 DOI: 10.3390/ijms24032356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Despite curcumin (CUR) inhibiting cell proliferation in vitro by activating apoptotic cell death, its use in pharmacological therapy is hampered by poor solubility, low stability in biological fluids, and rapid removal from the body. Therefore, CUR-derivatives with better biological and chemical-physical characteristics are needed. The bis-ketone moiety of CUR strongly influences its stability in slightly alkaline solutions such as plasma. Here, we considered its replacement with isoxazole, beta-enamine, or oxime groups to obtain more stable derivatives. The evaluation of the chemical-physical characteristics showed that only of the isoxazole derivatives 2 and 22 had better potential than CUR in terms of bioavailability. The UV-visible spectrum analysis showed that derivatives 2 and 22 had better stability than CUR in solutions mimicking the biological fluids. When tested on a panel of cell lines, derivatives 2 and 22 had marked cytotoxicity (IC50 = 0.5 µM) compared with CUR only (IC50 = 17 µM) in the chronic myeloid leukemia (CML)-derived K562 cell line. The derivative 22 was the more selective for CML cells. When administered at the average concentration found for CUR in the blood of patients, derivatives 2 and 22 had potent effects on cell cycle progression and apoptosis initiation, while CUR was ineffective. The apoptotic effect of derivatives 2 and 22 was associated with low necrosis. In addition, derivative 22 was able to reverse drug resistance in K562 cells resistant to imatinib (IM), the reference drug used in CML therapy. The cytotoxicity of derivative 22 on IM-sensitive and resistant cells was associated with upregulation of FOXN3 and CDKN1A expression, G2/M arrest, and triggering of apoptosis. In conclusion, derivative 22 has chemical-physical characteristics and biological effects superior to CUR, which allow us to hypothesize its future use in the therapy of CML and CML forms resistant to IM, either alone or in combination with this drug.
Collapse
|